How to measure dose? - Demystifying TG21

Presenter: Chengzhu Zhang Residency 2023~2024

Rotation Mentor: Xiao Wang 09/12/2023

Robert Wood Johnson Medical School

TG-51

- Reading to dose: Calibration factor N_{d,w}
- Standard to user beam: Beam quality factor k_0

TG-21

Difficulties measuring the dose

Compton Scattering Rayleigh Scattering Photoelectric interaction Pair/Triplet Production

JTGERS

Dose is not directly measurable ...

The physical picture of stopping power

 θ

Two-body Collision

TGERS

Angular Energy Transfer (Energy) Angular Cross Section (Probability)

Total Energy Transferred $E_{tr} = \int T(\theta) db(\theta)$

 $T(\theta)$

For charged particle interaction

FGERS

How photon beam deposits dose? RUTGERS

- From photon perspective:
 - The photon fluence attenuates.
 - Photon energies are transferred to electrons.
 - The secondary electrons deposit energy → dose.
 - Secondary electron spectrum remain similar.

How electron beam deposits dose RUTGERS

- From electron perspective
 - Electrons continuously slow down $(E\downarrow)$
 - Secondary electrons spectrum varies with depth.
 - Considering energy transfer lower than a threshold $(\Delta) \rightarrow$ "restricted"

Energy deposit locally.

☆Dose equivalency

JTGERS

Energy Transfer among radiation and charged particles ΓGERS

Ideal scenario to measure dose

JTGERS

Transient CPE

UTGERS

same photon-energy \rightarrow same secondary electron spectrum

CPE

TCPE curve

Principle of dose measurement

UTGERS

Principle of dose measurement

RUTGERS

Quantity Fluence

TGERS

$$D_{\text{air}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E) \qquad D_{\text{med}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)$$

$$\frac{D_{\text{med}}}{D_{\text{air}}} = \frac{\int dE \ \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)}{\int dE \ \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E)}$$

$$D_{\text{air}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E) \qquad D_{\text{med}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)$$

$$\frac{D_{\text{med}}}{D_{\text{air}}} = \frac{\int dE \ \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)}{\int dE \ \Phi_e(E)}$$
$$\frac{\int dE \ \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E)}{\int dE \ \Phi_e(E)}$$

Normalized by $\Phi_e(E)$

$$D_{\text{air}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E) \qquad D_{\text{med}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)$$

$$\frac{D_{\text{med}}}{D_{\text{air}}} = \frac{\left(\frac{\overline{S}}{\rho}\right)_{\text{med}}}{\left(\frac{\overline{S}}{\rho}\right)_{\text{air}}}$$

JTGERS

Normalized by $\Phi_e(E)$

$$D_{\text{air}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{air}}(E) \qquad D_{\text{med}} = \int dE \, \Phi_e(E) \left(\frac{S}{\rho}\right)_{\text{med}}(E)$$

$$\frac{D_{\text{med}}}{D_{\text{air}}} = \left(\frac{\overline{S}}{\rho}\right)_{\text{air}}^{\text{med}}$$

Normalized by $\Phi_e(E)$

FGERS

same build-up $B_{\bar{x}}$

Normalized by $\Psi(E)$

TGERS

- Δ : chamber size related.
- Only electron energy > Δ can enter the cavity.
- Only of energy < ∆ deposits energy in the volume, becoming "dose".

FGERS

ose".
$$D_{\text{cavity}} = \int_{\Delta}^{E_{\text{max}}} dE \, \Phi(E) \left(\frac{S}{\rho}\right)_{\Delta} (E)$$

Measuring dose in free air

High Voltage Power Supply High Voltage Electrode Guard Wires < **Collecting Volume** X – Ray Source Guard Electrode * * $\propto E_{tr}$ Electrometer called "exposure" ÷ X: measured charges collected $K_{c_{air}}$ \overline{W} е air energy needed per ion pair

GERS

Measuring dose in free air

Free-air chamber (sagittal)

TGERS

Measuring dose in free air

JTGERS

JTGERS

gas

Electron Perspective

KUTGERS

Electron Perspective

JTGERS

RUTGERS

Photon Perspective

TGERS

JTGERS

Ion chamber (sagittal) \approx free-air chamber

RUTGERS

JTGERS

JTGERS

Summary of dose measurement **RUTGERS**

GERS

RUTGERS

Summary

RUTGERS

- We demystified TG-21 by understanding the process of energy transfer among radiation and charged particles and the process of dose deposition.
- We utilized cavity theory to measure dose through an ion chamber in the real world.

Contact: cz453@cinj.Rutgers.edu

Rotation Mentor: Xiao Wang

Cylindrical chamber: what's good?

What is *P*_{TP} ?

What is P_{TP} ?

Denser air molecules, More chance of ionization!

 $I \propto n$

Ion Chamber

RUTGERS

For a cylindrical chamber

TGERS

Recombination↑ charge collection time↑ (dead time↑)

•We are supposed to collect 100 nC.

 $M_{corr} = M_{raw} \left(\frac{M_{+} - M_{-}}{2M_{+}}\right) = 98 \times \frac{98 + 95}{2 \times 98} = 98 \times 0.985$

= 96.5 nC, even worse!!

•We are supposed to collect 100 nC.

 $M_{corr} = M_{raw} \left(\frac{M_{+} - M_{-}}{2M_{+}}\right) = 98 \times \frac{98 + 95}{2 \times 98} = 98 \times 0.985$

= 96.5 nC, even worse!!

TG-51 is not trying to correct polarity effect related to the chamber design.

Cause (II): Electron Contamination RUTGERS

•We are supposed to collect 100 nC.

TG-51 corrects polarity effect related to any type of electric current contamination of <u>a</u> <u>fixed direction.</u>

What is *P*_{ion} (recombination)? **RUTGERS**

- In principle, how to correct **P**_{ion}?
 - Measure the collected charge at each voltage and then extrapolate to the limit.

What is *P*_{ion} (recombination)? **RUTGERS**

- In principle, how to correct **P**_{ion}?
 - Measure the collected charge at each voltage and then extrapolate to the limit.

Theoretical model of *P*_{ion}.

$$p = \tilde{V} \ln\left(1 + \frac{1}{1 + \tilde{V}}\right) \qquad p = \tilde{V}\left(\frac{1}{1 + \tilde{V}}\right) + \frac{3}{4}\left(\frac{1}{1 + \tilde{V}}\right)^2 + \cdots$$

RUTGERS

Theoretical model of *P*_{ion}.

JTGERS

Charge collection efficiency:

$$p = \frac{\tilde{V}(\rho)}{1 + \tilde{V}(\rho)}$$

TGERS

The so-called "two-voltage" technique:

$$M_H = Cp_H = \frac{\tilde{V}_H(\rho)}{1 + \tilde{V}_H(\rho)} \qquad M_L = Cp_L = \frac{\tilde{V}_L(\rho)}{1 + \tilde{V}_L(\rho)}$$

Solve for p_H

$$p_H = \frac{1 - \frac{V_H}{V_L}}{\frac{M_H}{M_L} - \frac{V_H}{V_L}}$$

RUTGERS

Solve for p_H

The physical picture of radiation stopping power

The physical picture of
radiation stopping powerRUTGERS6X FFF
Beam Profile6X FFF
beam Profile

Position

The physical picture of radiation stopping power

The physical picture of radiation stopping power

Electrometer reading corrections RUTGERS

$M = M_{\rm raw} P_{ion} P_{pol} P_{TP}$