Challenger or Trailblazer? How MR-Guided Radiotherapy is Shaping Prostate Cancer Treatment

Oct, 2024 Chengzhu Zhang

The rationale of IGRT

R

Management of Target Delineation

Contour OAR (reduce adverse effect)

Define Boundary (radiation therapy) Management of Precision

Image-guided Setup (image registration)

Re-Simulation (ineffective)

Management of Onboard Motion

> 4D-CBCT (gating)

kV/MV Fiducial [1,2] (Sequential acquisition)

Cine Imaging* (sparsely sampled in time)

The rationale of MRgRT

R

Management of Target Delineation

Better delineation of CTV (manual or automatic)

Soft-tissue OAR (Phase II ERECT)

See GTV (Phase III FLAME) Management of Anatomy Change

Onboard MRI (Interfractional Change)

Adaptive Planning (Adapt to position/shape) Management of Onboard Motion

Cine Imaging (Intrafractional adaptive)

4D-MRI monitoring (gating, tracking)

To understand the current treatment paradigm for local stage prostate cancer

To understand the role of MRgRT

Radiation therapy regimen (NCCN guidelines)

Regimen	Preferred Dose/Fractionation	Low	Favorable Intermediate	Unfavorable Intermediate	High and Very High			
EBRT								
Moderate Hypofractionation	3 Gy x 20 fx 2.7 Gy x 26 fx 2.5 Gy x 28 fx	\checkmark	\checkmark	\checkmark	\checkmark			
Conventional Fractionation	1.8–2 Gy x 37–45 fx	\checkmark	\checkmark	\checkmark	\checkmark			
SBRT Ultra- Hypofractionation	9.5 Gy x 4 fx 7.25–8 Gy x 5 6.1 Gy x 7			\checkmark				
Brachytherapy Monotherapy								
LDR lodine 125 Palladium 103 Cesium 131	140 Gy,145 Gy 125 Gy 115 Gy	\checkmark	\checkmark					
HDR Iridium-192	13.5 Gy x 2 implants 9.5 Gy BID x 2 implants	\checkmark	\checkmark					
Boost Brachytherapy or SBRT with EBRT (2.5 Gy × 15 fx = 37.5 Gy)								
LDR lodine 125 Palladium 103 Cesium 131	110–115 Gy 90–100 Gy 85 Gy			\checkmark	\checkmark			
HDR Iridium-192	15 Gy x 1 fx 10.75 Gy x 2 fx			\checkmark	\checkmark			
EBRT + SBRT Boost	9.5 Gy x 2 fx for SBRT boost			\checkmark	\checkmark			

Radiation therapy regimen (NCCN guidelines)

Regimen	Preferred Dose/Fractionation	Low	Favorable Intermediate	Unfavorable Intermediate	High and Very High			
EBRT								
Moderate Hypofractionation	3 Gy x 20 fx 2.7 Gy x 26 fx 2.5 Gy x 28 fx	\checkmark	\checkmark	\checkmark	\checkmark			
Conventional Fractionation	1.8–2 Gy x 37–45 fx	\checkmark	\checkmark	\checkmark	\checkmark			
SBRT Ultra- Hypofractionation	9.5 Gy x 4 fx 7.25–8 Gy x 5 6.1 Gy x 7	\checkmark	\checkmark	\checkmark	\checkmark			
Brachytherapy Monotherapy								
LDR lodine 125 Palladium 103 Cesium 131	140 Gy,145 Gy 125 Gy 115 Gy	\checkmark	\checkmark					
HDR Iridium-192	13.5 Gy x 2 implants 9.5 Gy BID x 2 implants	\checkmark	\checkmark					
Boost Brachytherapy or SBRT with EBRT (2.5 Gy × 15 fx = 37.5 Gy)								
LDR lodine 125 Palladium 103 Cesium 131	110–115 Gy 90–100 Gy 85 Gy			\checkmark	\checkmark			
HDR Iridium-192	15 Gy x 1 fx 10.75 Gy x 2 fx			\checkmark	\checkmark			
EBRT + SBRT Boost	9.5 Gy x 2 fx for SBRT boost			\checkmark	\checkmark			

Radiation therapy regimen (NCCN guidelines)

Regimen	Preferred Dose/Fractionation	Low	Favorable Intermediate	Unfavorable Intermediate	High and Very High		
EBRT							
Moderate Hypofractionation	3 Gy x 20 fx 2.7 Gy x 26 fx 2.5 Gy x 28 fx	\checkmark	\checkmark	\checkmark	\checkmark		
Conventional Fractionation	1.8–2 Gy x 37–45 fx	\checkmark	\checkmark	\checkmark	\checkmark		
SBRT Ultra- Hypofractionation	9.5 Gy x 4 fx 7.25–8 Gy x 5 6.1 Gy x 7	\checkmark	\checkmark	\checkmark	\checkmark		
Brachytherapy Monotherapy							
LDR lodine 125 Palladium 103 Cesium 131	140 Gy,145 Gy 125 Gy 115 Gy	\checkmark	\checkmark				
HDR Iridium-192	13.5 Gy x 2 implants 9.5 Gy BID x 2 implants	\checkmark	\checkmark				
Boost Brachytherapy or SBRT with EBRT (2.5 Gy × 15 fx = 37.5 Gy)							
LDR lodine 125 Palladium 103 Cesium 131	110–115 Gy 90–100 Gy 85 Gy			\checkmark	\checkmark		
HDR Iridium-192	15 Gy x 1 fx 10.75 Gy x 2 fx			\checkmark	\checkmark		
EBRT + SBRT Boost	9.5 Gy x 2 fx for SBRT boost			\checkmark	\checkmark		

50~60~70 Gy

More cost effective and less time

More cost effective and less time

Rx Diagram I – all risk groups More cost effective and less time Local control need longer term Established Care Moderately 2 fx Dose SBRT hypofractionation **Escalated** SBRT CHHiP³ **PROFIT³ MDACC³** Dutch³ HYPO-RT-PC³ 2STAR² **PACE-B**³ MGH³ **MRC**³ vs PATRIOT² **HYPRO³ RTOG0415³ RTOG0126³** Better (early) toxicity Hypofractionated 5 fx 2 fx **MRgRT** MRgRT MRgRT FORT² **MIRAGE**³ *PACE-C³ **ASTRO 2019² HERMES**² **RTOG 0232** LDR 2 fx HDR Mt Vernon² *Brachy brachytherapy Sunnybrook²

Rx Diagram I - Risk group breakdown

- CHHiP trial (73% IR, 12% HR),
- PROFIT trial (all IR),
- HYPRO trial (26% IR, 74% HR)
- **RTOG0415 (LR)**

- HYPO-RT-PC (89%IR, 11% HR)
- PACE-B (9.3%LR, 90.7% (F)IR)
- PACE-C* (IR, HR)

- MIRAGE (All risks) ASTRO (IR, HR) HERMES (IR)
- FORT (LR, IR)

Starting Plan

45 Gy ± SV ± WPRT

Starting Plan 45 Gy ± SV ± WPRT

Prostate ± SV RTOG-0924

Prostate ± SV RTOG-0924

Question I: Is MRgRT better than standard hypofractionation or SBRT

- Early toxicity results comparing 5 fx
 - Phase II, single-arm (ASCO GU 2019), view-ray early toxicity better than HYPRO arm
 - Phase III, MIRAGE (ASCO GU 2022), view-ray reduced margin (2 mm) better than PACE-B arm (4 mm), reduced toxicity and improved QoL.

Question I: Is MRgRT better than standard hypofractionation or SBRT

R

- Early toxicity results comparing 5 fx
 - Phase II, single-arm (ASCO GU 2019), view-ray
 - Phase III, MIRAGE (ASCO GU 2022), view-ray

- Dose MRgRT offer better biochemical control?
 - Not data yet, but included in MIRAGE objective IV w 5 yr followup

Question II: Can MR-Linac compete in the LR and FIR group against Brachytherapy?

- Brachy-monotherapy treats this risk group. (RTOG0232)
- Does standard hypofractionation/SBRT treat this group?
 - Yes endorsed by NCCN, and supported by meta-analysis* Kishan JAMA 2019
- Does SBRT provide non-inferior outcome?
 - Is hypofractionation a strong competitor*? Yes (RTOG0415)
 - Is SBRT a strong competitor*? Yes (PACE-B)

Question II: Can MR-Linac compete in the LR and FIR group against Brachytherapy?

- Brachy-monotherapy treats this risk group. (RTOG0232)
- Does standard hypofractionation/SBRT treat this group?
 - Yes endorsed by NCCN, and supported by meta-analysis* Kishan JAMA 2019
- Does SBRT provide non-inferior outcome?
 - Is hypofractionation a strong competitor*? Yes (RTOG0415)
 - Is SBRT a strong competitor*? Yes (PACE-B)
 - Is MR-Linac better than "CT-Linac"? Promising (MIRAGE, ASTRO2019), but noninferiority needed.

Question III: Can MR-Linac compete in UIR & HR group against brachytherapy boost?

- Which boost is better, EBRT or Brachy
 - Answered by ASCENDE-RT, biochemical failure halved but toxicity higher in brachy.
- Which boost is better, SBRT or Brachy?
 - brachytherapy GU↑, GI↓; SBRT GU↓; no prospective data.
 - rely on evidence from PROMETHEUS

Can MR-Linac boost patents?

No data, rely on evidence from PROMETHEUS and MIRAGE

Local Primary

MRgRT

Hypofractionated EBRT ± BT boost SBRT

Focal Treatment

Local Primary

Hypofractionated EBRT ± BT boost SBRT & MRgRT Focal Boost

EBRT SIB FLAME DELINEATE

***EBRT focal boost**

Phase III Flame Trial

- A focal boost to the dominant intraprostatic lesion (DIL) showed improved biochemical disease-free survival (bDFS) with comparable toxicity to patients receiving no boost.
- (85%HR, 15%IR, 4 LR) utilized a <u>conventional</u> fractionation scheme that delivered <u>77Gy in 35 fractions (2.2 Gy/fx)</u> to the prostate with a SIB to the DIL to 95Gy

***EBRT focal boost**

Phase III Flame Trial

Phase III PIVOTALboost (DELINEATE)

 (IR, HR) report 5-year efficacy and toxicity of intraprostatic lesion boosting using the base of 3Gy/fx (CHHiP) radiation therapy to prostate + SV and 67 Gy to the intraprostatic lesion.

***EBRT SBRT focal boost**

Phase II HYPO-FLAME

 (25% IR and 75% HR) delivering 35Gy in 5 fractions, once-weekly with SIB to the DIL to 50Gy total. (HYPO 2.0, twice-weekly)

Phase II PIVOTALboost (DELINEATE)

- (IR, HR) report 5-year efficacy and toxicity of intraprostatic lesion boosting using the base of 3Gy/fx (CHHiP) radiation therapy to prostate + SV
- DELINEATE Cohort E in 5 fx, similar to HYPO-FLAME & 2.0.

Question IV: Can MR-Linac treat focal boost?

Question IV: Can MR-Linac treat focal boost?

Phase II MSK Boost trial

40 Gy in 5 fractions (<u>5 × 8</u>) to the prostate with 45 Gy to the dominant lesion

Phase II AFFIRM

35 Gy to the prostate with 50 Gy to the intraprostatic tumor in 5 fractions

Phase II HERMES

 24 Gy in 2 fractions (12 × 2) to the prostate with an intraprostatic boost to 27 Gy in 2 fractions

- Existing trials did not show biochemical and local control data.
 - Too early. Early toxicity results are shown first in the interim study.

- Existing trials did not show biochemical and local control data.
 - Too early. Early toxicity results are shown first in the interim study.
- MR-Linac has its own competitors such as kV monitoring, CBCT-guided etc.

MRgRT trials (not comprehensive)

Trial	NCT	Device	Phase	Plan #	Primary outcome	Target Rx	Standard Rx	status
<u>HERMES</u>	04595019	Unity	II	46	Acute grade 2+ GU toxicity	24 Gy in 2 fractions to the prostate with an intraprostatic boost to 27 Gy in 2 fractions	36.25 Gy to the prostate in 5 fractions	Open
UltraHypo	05183074	Unity	Ш	50	Incidence of acute GU and GI toxicity	Not stated	NA	Open
<u>ERECT</u>	04861194	Unity	II	70	Erectile dysfunction over 3 years post SBRT	36.25 Gy in 5 fractions with sparing of the neurovascular bundle, IPA, corpora cavernosa, and penile bulb	NA	Open
Boost (MSK)	04997018	Unity	II	91	A reduction in posttreatment biopsy rates at 24 months	40 Gy in 5 fractions to the prostate with 45 Gy to the dominant lesion	NA	Open
<u>AFFIRM</u>	05373316	Unity	II	95	Acute GI and GU toxicity	35 Gy to the prostate with 50 Gy to the intraprostatic tumor in 5 fractions	NA	Open
2SMART	03588819	Unity	?	30	Quality of life using EPIC	26 Gy in 2 fractions to the prostate and the DIL dose of up to 32 Gy in 2 fractions delivered 1 week apart	NA	Open
iSMART	05600400	Unity	II	144	Change in quality of life function	27 Gy in 2 fractions to the prostate	Five every other day fractions of 8 Gy	Open
LEAD	01411319	ViewRay	I	25	Grade 2 or higher physician- reported treatment-related adverse events	12-14 Gy in 1 fraction to the mpMRI-defined GTV on day 1, followed by standard 38 fraction IMRT	N/A	Completed
<u>FORT</u>	04984343	ViewRay	II	136	Change in patient-reported GI symptoms using EPIC	37.5 Gy in 5 fractions to the prostate	25 Gy in 2 fractions to the prostate	Recruiting
SIBRT	03664193	ViewRay	?	30	Feasibility	35 Gy in 5 fractions to the prostate with prostate lesion SIB to 37.5, 40, 42.5, or 45 Gy	NA	Completed
EXCALIBUR	04915508	ViewRay	II	102	Change in patient-reported GI symptoms using EPIC	30-34 Gy in 5 fractions	N/A	Recruiting
SHORTER	04422132	ViewRay	П	134	Change in patient-reported GI symptoms using EPIC	32.5 Gy in 5 fractions	55 Gy in 20 fractions	Recruiting

Summary: Patient Selection at local stages

Contradiction

- Patient size, limited by the bore
- Longer treatment time (bladder filling, patient tolerance etc.)
- Patients with metallic implants
- Competing CT-based, conventional hypofractionation?
 - Yes, all risk groups, evidenced by two single-arm phase II trial compared to PACE-B

Competing brachytherapy?

- Low risk group Yes. 2 fx / 5fx MR-Linac → tumor control?
- High risk group boost PROMETHEUS trial → MR-Linac?
- Locally advanced group DELINEATE trial → MR-Linac?
- Focal Boost FLAME trial EBRT → no trials opened for brachy & MR-Linac
- Focal Salvage FSHARP trial Brachy \rightarrow no trial opened for MR-Linac