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Learning to Reconstruct Computed Tomography
Images Directly From Sinogram Data Under A
Variety of Data Acquisition Conditions

Yinsheng Li

Abstract— Computed tomography (CT) is widely used
in medical diagnosis and non-destructive detection. Image
reconstructionin CT aims to accurately recover pixel values
from measured line integrals, i.e., the summed pixel values
along straight lines. Provided that the acquired data satisfy
the data sufficiency condition as well as other conditions
regarding the view angle sampling interval and the severity
of transverse data truncation, researchers have discov-
ered many solutions to accurately reconstruct the image.
However, if these conditions are violated, accurate image
reconstruction from line integrals remains an intellectual
challenge. In this paper, a deep learning method with a
common network architecture, termed iCT-Net, was devel-
oped and trained to accurately reconstruct images for previ-
ously solved and unsolved CT reconstruction problems with
high quantitative accuracy. Particularly, accurate recon-
structions were achieved for the case when the sparse view
reconstruction problem (i.e., compressed sensing problem)
is entangled with the classical interior tomographic prob-
lems.

Index Terms—Image reconstruction, deep learning,
sparse-view, interior tomography.

|. INTRODUCTION

HE reconstruction of a function in N-dimensional space

from its integral values over a K -dimensional hyperplane
(1 < K < N) is a central topic in integral geometry [1], [2].
The importance of integral geometry in our daily life can
be appreciated by noting that the data acquired in x-ray
medical computed tomography (CT) are essentially line inte-
grals through the human body. These line integral data (i.e.,
integral values for K = 1) are acquired at different view
angles as the tube-detector assembly rotates from one angular
position to another. Image reconstruction from line integrals
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is also central to other imaging modalities [3], [4] such as
Single Photon Emission Computed Tomography (SPECT) and
Positron Emission Tomography (PET).

In an ideal scenario, when acquired line integral data can be
converted to properly fill the corresponding Fourier space of
the image function, the modern filtered back projection (FBP)
[5] solution can be readily derived using the inverse Fourier
transform, essentially equivalent to the one discovered by
Radon [6], [7] in 1917. However, the Fourier transform related
FBP reconstruction method is rather restrictive [8]. Due to the
quasi-local nature of the information encoding process (i.e.,
the acquisition of line integral data only involves the function
values along a straight line) as well as the use of divergent
beam acquisition geometry in CT, there are many other new
solutions [9], [10] to exactly reconstruct the image function.
Interestingly, these solutions are not mathematically equivalent
to one another and these new solutions even enable one to
accurately reconstruct a region of interest (ROI) inside the
scan field of view (FOV) [11]-[15] with much more relaxed
data acquisition conditions, e.g., the super-short scan problem.
In this case, it is important to note that there are missing data
in Fourier space and thus the Fourier based FBP methods fail
to accurately reconstruct the image. Furthermore, if all of the
acquired line integral data are potentially truncated, the intrin-
sic connection with the Fourier transform of the image object
completely fails. In this so-called interior problem [3], [4],
it has been mathematically proven [16]-[18] that a stable solu-
tion does exist under certain conditions, albeit no analytical
inversion formula has been discovered yet for this case.

The reconstruction problem with line integral data becomes
even more difficult when data acquisition view angles are
sparse. Despite the so-called compressed sensing (CS) the-
ory [19], [20] having provided a mathematical foundation
to address this sparse view reconstruction problem, when
the super-short scan and interior problems in CT encounter
sparse view acquisitions, it remains unknown whether it is
possible to accurately reconstruct either the entire image or
local ROIs within the FOV. Additionally, the inevitable noise
contamination in data acquisition further complicates image
reconstruction problems from line integral data.

Inspired by the breakthroughs of deep learning [21]-[24]
in computer vision and natural language processing, and its
success in computer games [25]-[27], physics [28], [29],
chemistry [30], and recently tomographic image reconstruction
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problems in MRI, CT, and other modalities [31], [32], one
may wonder whether deep learning may be employed to
not only accurately reconstruct images for those line integral
reconstruction problems that have already been solved through
human knowledge, but also those that have not yet been
solved by human knowledge such as the interior tomographic
problem with sparse view angles. In this work, we developed
a deep neural network, referred to as intelligent CT network
(iCT-Net) and demonstrated that this iCT-Net can be trained to
reconstruct images with high quantitative accuracy with either
complete or incomplete line integral data including problems
that have not been solved or have not been satisfactorily solved
by human knowledge.

II. NETWORK ARCHITECTURE AND
TRAINING STRATEGIES

A. Deep Learning Neural Network Architecture

When x-ray photons interact with an image object to encode
the structural information of that object into measured line
integral data, quantum noise caused by the intrinsic photon
number fluctuations is inherent in the measured data. There-
fore, uncertainty is inevitable in the acquired line integral data
in x-ray CT and thus it is natural to use a statistical frame-
work to address the image reconstruction problem. In this
framework, an image estimate X is defined as the image that
maximizes the posteriori conditional probability P(x|y) given
the measured line integral data y € ), where y denotes the
individual line integral datum in sinogram space which is
denoted as ). This is accomplished via the Bayesian inference
and solving the optimization problem:

X = argmax P(x|y) = argmax P(y|x)P(x) (1)

This method requires an explicit assumption about the
a priori distribution P(x). In statistical machine learning,
instead of using an explicit assumption on the prior P(x),
the posterior distribution P(x|y) is directly learned from the
training data via a supervised learning process [33]. In this
process, a sample x; is drawn from the output training image
data set and a sample y; is drawn from the input training
line integral data set. The data pairs (y;, x;) are used to train
the iCT-Net in this work, to learn a map f : YV — X
(X denotes image space), i.e., a map directly from sinogram
space to image space, such that the learned model distribution,
O(x|y; f), can best approximate the underlying posterior
distribution, P (x|y). Once the map f : Y +— X is learned, it is
applied to predict an image output from the input projection
data not used in the training process.

The design of our iCT-Net was inspired by the current
FBP based CT imaging pipeline which consists of three major
cascaded steps: The first step is to correct measured signals to
account for erroneous detector counts caused by a variety of
physical reasons such as excessive noise and beam hardening,
followed by the second step to filter the corrected data with
an apodized ramp filter, and the third step to backproject the
filtered data to accomplish the domain transform from line
integral space to tomographic image space. In the iCT-Net
architecture, multi-channel convolutional neural layers were
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Fig. 1. Architecture of iCT-Net. The proposed deep neural network
consists of a total of 12 layers (L1-L12). The L11 layer is a frozen layer,
which means that parameters in this layer are not updated in the training
process. Both linear and nonlinear activations are used as indicated in the
graphics. S is a hard thresholding activation function defined in Eq. (2).

designed to not only maintain the primary functionality of
each of the above three steps in the conventional FBP based
CT imaging pipeline, but also to enable iCT-Net to address
difficult image reconstruction problems such as view angle
truncation, the view angle undersampling, and interior prob-
lems using the same architecture. Specifically, the design of
our iCT-Net consists of four major cascaded components as
shown in Figure 1: (1) Convolutional layers (L.1-L5) suppress
excessive noise in line integral data and convert a sparse view
sinogram into a dense view sinogram. These layers accomplish
a manifold learning process, i.e., to learn a noise-reduced
and complete data manifold from a noise contaminated and
sparse view data manifold. This component is analogous to
the signal correction step in the conventional FBP based
CT imaging pipeline. (2) Convolutional layers (L6-L9) learn
high level feature representations from the output data of the
L5 layer. This component is analogous to the filtering step
in the conventional FBP based CT imaging pipeline. (3) A
fully connected layer L10 performs a domain transform from
the extracted data feature space to image space. (4) Layers
L11 and L12 learn a combination of the partial image from
each view angle to generate a final image. These final two
components are analogous to the backprojection and summa-
tion steps in the conventional FBP based CT imaging pipeline,
but with learnable summation weights to account for potential
data redundancy and differences caused by the completely
different strategies used in iCT-Net to filter data. Parameters in
all layers are directly learned from the input data and training
images in the training data set. The iCT-Net architecture
enables us to reconstruct images with a 512 x 512 matrix since
the number of parameters is on the order of O(N? x N,.), which
is in contrast to O(N4) in other architectures [32]. Here, N
denotes the image matrix size and N, denotes the number of
detector elements.

As shown in Figure 1, iCT-Net takes an acquired sinogram
with dimensions of N, x N,, to generate a CT image with
a matrix size of N x N (N = 512), via a twelve-layer deep
neural network. Here N, denotes the number of view angles.
Specifics of each of the twelve layers in iCT-Net are described
as follows.

L1-L5 are five convolutional layers. L1-L3 operate along
the dimension of detector elements while L4 and L5 operate
along the dimension of view angles. The L1 layer has 64 con-
volutional kernels, each with a dimension of 3 x 1 x 1, followed
by a hard shrinkage operator (S,) as the activation function,
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which is defined as:

output,
0, |output] < 4,

|output| > A
: 2)

S, (output) = {
where A is the threshold value. The L2 layer has another
64 convolution kernels with a dimension of 3 x 1 x 64, followed
by S, as the activation. In order to learn new features from
the output of the L1 and L2 layers, the original input and
the feature outputs of the first two layers were concatenated
to form inputs for the L3 layer, the L3 layer has a single
channel convolution kernel with a dimension of 3 x 1 x 129,
followed by S, as the activation. The hyper-parameter 4 was
empirically selected to be A = 1 x 107 for L1-L3 layers.
In the L4 layer, there are a; N, convolutional kernels with
the dimension of 1 x 1 x N,, followed by an activation ;.
In the L5 layer, there are ap N, convolutional kernels with the
dimension of 1 x 1 xa; N,, followed by another activation S}.
A hyperparameter value of 2 = 1 x 1078 in L4 and L5 layers
and a hyperparameter value of oy = ax = 1 was selected for
the dense view reconstruction problem while a1 = 2, a0 = 4
were empirically selected for the sparse view reconstruction
problem with a factor of four view angle undersampling.

L6-L10 are another five convolutional layers. In the
L6 layer, there is one kernel with a dimension of N, X
ar N, x 1, followed by a linear activation. In the L7 layer,
there are sixteen kernels with a dimension of f x 1 x 1,
followed by a hyperbolic tangent activation, i.e., the operation
of the function ranh(x). There is one kernel with dimensions
of f x 1 x 16 followed by a hyperbolic tangent activation
in the L8 layer. There are N, kernels with dimensions of
1 x 1 x N, followed by a hyperbolic tangent activation in
the L9 layer. Finally, there are N2 kernels with dimensions of
I x 1 x N, followed by a linear activation in the L10 layer.
Hyperparameters N = 512 and N, = 888 were selected for
the non-interior reconstruction problem while N, = 222 was
selected for the interior problem with & = 12.5 cm FOV.

Kernels with stride one were used for all convolutional
layers. All layers were designed with bias terms except for
the L6, L10, and L12 layers. Convolution operations in all
convolutional layers were performed with padding to maintain
the dimensionality before and after the convolution operations.

L11-L12 layers generate the final image. The dimensions of
the output of the L10 layer are a; N, x N2. For each of the
as N, channels, the N2 values were reshaped into a matrix
with a size of N x N. The matrix was then rotated around
its center by an increment angle ¢; = (ax N, —i)A¢, (i =
1,2,---,a2 N,) followed by a bilinear interpolation to make
sure the rotated matrix stays on a Cartesian grid. Hyperpara-
meter Agp = 755 was selected in this work. The rotated matrix
was then reshaped back to a column vector with dimension of
N?. The L12 layer combines the contribution from each of
the ay N, channels via a convolution kernel with dimension
1 x 1 x ay N, followed by a linear activation to generate
the final image with size of N2. Note that the introduction
of a separated rotation layer (L11) reduces the dimension of
learnable parameters in L10 from ay N, N.N% to N.N? and
makes L10 trainable using limited GPU memory designed for
personal computers.

I I ST NN
Parameters 643 x1x1 64,3 X1 X% 64 1,3x1x129
Output 64,N. x N, 64, N X N,, 1,Nc X N,

I N R B T

Parameters a;Ny, 1 X1XN, a,N,,1X1XaN, 1,N; X apN,, X 1

Output ay Ny, No X 1 ayN,, N, x 1 1,N; X aN,,
v i
Parameters 16, x1x1 1, x1x16 N,1Xx1xN,

Output 16,N, X azN,, 1,N, X ayN,, N, 1 X ayN,
T
Parameters N2,1x1xN, n/a 11X 1Xa,N,
Output N2,1X a,N, a,N,, N? x 1 1L,N%x1

Fig. 2. Number of kernels and kernel dimensions as well as the
corresponding output in all twelve iCT-Net layers.

To help keep track the number of training parameters and
the dimension of each layer, these parameters are summarized
in Figure 2. Each entry in this table consists of the first number
to denote the number of kernels and the tuple followed by the
comma denotes the dimension of the used kernel in each layer.
For example, (64,3 x 1 x 1) in L1 layer means that there are
64 kernels with dimensions 3 x 1 x 1.

B. Training Strategies

To maximize the potential generalizability of the trained
iCT-Net, training datasets should be maximally expanded to
include a wide variety of human anatomy at a wide variety
of x-ray exposure levels. Although it is possible to access
the anonymized clinical CT image data with a variety of
human anatomy and other animal anatomy, it is very difficult
to obtain data with a wide variety of radiation dose levels.
Additionally, the quality of training data acquired from real CT
scanners may be compromised due to physical confounding
factors such as beam hardening, scatter, the x-ray tube heel
effect, and the limited dynamic range of x-ray detectors.
To minimize the impact of these confounding factors without
compromising the applicability of the trained iCT-Net in
experimental evaluations, a two-stage training strategy was
used in this study. The first training stage was performed
using numerical simulation data and the second training
stage was performed using experimental data acquired from a
64-slice MDCT scanner (Discovery CT750 HD, GE Health-
care, Waukesha, WI).

1) Stage-1 Training: This stage includes both a segment-by-
segment pre-training phase followed by an end-to-end training
phase. The pre-training for the segment L1-L3 was performed
using paired training data with low dose (high noise) projec-
tion data as input and high dose (low noise) projection data as
output. The segment L4-L5 was pre-trained using sinograms
with sparse view angles as input and sinograms with dense
view angles as output. The segment L7-L9 was pre-trained
using sinogram data with dense view angles as input and the
corresponding sinograms filtered with a conventional Ram-Lak
filter as output. Note that for the interior problem, the input
sinogram data are truncated, but the output data used in pre-
training are a correspondingly truncated portion of the filtered
data generated by applying the Ram-Lak filter to the non-
truncated data. In the segment-by-segment pre-training stage,
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