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High Pitch Helical CT Reconstruction
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Abstract— To avoid severe limited-view artifacts in recon-
structed CT images, current multi-row detector CT (MDCT)
scanners with a single x-ray source-detectorassembly need
to limit table translation speeds such that the pitch p (viz.,
normalized table translation distance per gantry rotation) is
lower than 1.5. When p > 1.5, it remains an open question
whether one can reconstruct clinically useful helical CT
images without severe artifacts. In this work, we show that
a synergistic use of advanced techniques in conventional
helical filtered backprojection, compressed sensing, and
more recent deep learning methods can be properly inte-
grated to enable accurate reconstruction up to p = 4 without
significant artifacts for single source MDCT scans.

Index Terms—X-ray CT, MDCT, deep learning, com-
pressed sensing, image reconstruction.

|. INTRODUCTION

ULTI-ROW detector CT (MDCT) scanners are primary

workhorses in hospitals and clinics around the world.
They allow patients to be scanned continuously to increase the
scan throughput which is often defined as the scan volume per
unit time. With the increase of detector rows from single slice
scanners dating back to the early 1990s to the current popular
64-slice scanners and high-end 256-slice scanners, the anatom-
ical coverage along the superior/inferior (SI) direction, viz., z-
direction, can be as wide as 16 cm per scan rotation [1]. With
more detector rows to increase coverage, the cost of scanners
also escalates significantly. As a good balance between the
cost and clinical scan throughput, it is the MDCT scanners
with 64-slice or fewer that are predominantly used in current
clinical applications. There are two modes of data acquisition
in MDCT: axial scanning where the patient remains stationary
or helical CT (also called spiral CT) where the patient is
translated along the SI direction while the detector-source
assembly rotates around the patient. Helical CT was introduced
to the clinic in the early 1990s [2]-[4], revolutionizing the
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modality and making it easier and faster to scan larger patient
volumes, enabling the scan of an entire organ in a single
breath-hold. Presently, helical scanning is used for the vast
majority of scans in the clinic and is used to scan all parts
of the body including the chest [5], heart [6], abdomen and
pelvis [7], head [8], and extremities [9].

Different from the ordinary circular scans where the view
angles in a CT acquisition can be considered to be distributed
on a circular trajectory, the view angles in helical CT scan
mode are effectively distributed on a three-dimensional curve,
i.e., a helix. Given a certain number of view angles, the sam-
pling density of view angles depends on the geometrical
coverage along the z-direction. The longer the z-coverage,
the lower the view angle sampling density. The coverage along
the z-direction per helical turn is defined as helical pitch in
mathematical literature. However in helical CT, due to the
use of multi-row detectors in data acquisitions, the anatomical
coverage along the SI direction per gantry rotation depends
on the number of detector rows in MDCT. To eliminate
the potential confusion, helical pitch in the CT community
is defined as the linear distance travelled by the CT couch
per gantry rotation normalized by the detector collimation at
isocenter [10]. Therefore, helical pitch in the CT community
is defined as a dimensionless ratio while the helical pitch in
other scientific contexts may mean the extended height of a
helix turn with a physical unit of length.

For current single source MDCT scanners, the helical pitch,
p, is often restricted to below 1.5. This restriction is due to
the presence of image artifacts for pitches larger than 1.5 if
current state-of-the-art reconstruction algorithms are used to
reconstruct images. As it will be elaborated more carefully
in Section II-A, the angular range illuminating each image
voxel decreases as pitch increases. When p > 1.5, the view
angle ranges for the image pixels in a reconstruction plane
at 7 = zo fall well below the Tuy data sufficiency condition
[11]. Therefore, there are two intrinsic scientific challenges in
high pitch helical CT reconstruction problems: 1) the angular
sample interval is large—as that in view angle undersampled
reconstruction problems in circular scans—and 2) the view
angle range is also truncated—as that in limited view angle
reconstruction problems. As a result of these scientific chal-
lenges, high pitch helical reconstruction suffers from two main
types of image artifacts: limited view artifacts and artifacts
caused by the data inconsistency along the z-direction.

Despite the challenges in image reconstruction, high pitch
helical scans are highly desirable in clinical practices due
to the following important potential benefits: 1) As radiation
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dose to the patient is inversely proportional to the normalized
helical pitch p, high helical pitch scans are preferred for radi-
ation dose reduction purposes; 2) High helical pitch scanning
improves image quality in cardiac CT scans [12]. To complete
a cardiac CT exam with 4.0 cm z-coverage in current 64-slice
CT scans, the cardiac CT image volume of the entire heart
consists of image slabs from four different heart beats. Due
to the potential inconsistency from one heart beat to another,
the uniformity in image quality across the four slabs is limited.
With high helical pitch scans, the quality of uniformity can
be significantly improved; 3) High helical pitch CT scans
increase the scan throughput to improve the workflow in
current healthcare systems; 4) With high pitch scans, the same
scan volume coverage and other benefits offered by high-end
CT scanners, e.g., 256-slice MDCT scanners, can be achieved
with lower-end scanners such as 64-slice MDCT scanners.
This can reduce the total manufacturing costs of scanners due
to the fact that there are almost no mechanical challenges nor
safety concerns for patients to increase table translation speed
by a factor of 2-4 for the current speeds used in most single
source MDCT scanners.

Therefore, to enable low cost, low dose, and high quality
CT scans, it is critically important to address the scientific
challenges in high pitch p > 1.5 helical CT reconstruction
problems. This is the focus of our work in this paper. Specif-
ically, to address the view angle undersampling problem and
limited view problem in high pitch helical CT reconstruction
problems, we show that the synergistic use of the following
three techniques can be used to enable accurate helical CT
reconstruction for pitch up to 4.0: 1) A data interpolation
scheme was introduced to approximately fill the missing view
angles in high pitch helical scans and then a conventional
3D Fledkamp reconstruction algorithm (FDK) is used to
reconstruct the initial images. 2) A deep learning scheme
was introduced to transform the initially reconstructed image
with residual artifacts into high quality images. 3) If the
quality of the deep learning output is not satisfactory, the deep
learning output image is used as the prior image in prior
image constrained compressed sensing (PICCS) [13] to further
improve quality. While the data interpolation for helical FBP
in step 1 is similar to other well known techniques, steps 2 and
3 represent major innovations introduced in this work. As it is
shown in the results, depending upon the number of detector
rows used in MDCT scanners, the above strategies in image
reconstruction enables accurate helical CT reconstruction for
pitch up to p =4 for 16-, 32-, and 64-slice CT scanners.

Il. METHODS

A. Challenges in View Angle Sampling Range for High
Pitch Helical Acquisition

To achieve accurate CT reconstruction, two conditions must
be satisfied: 1) the view angle range must satisfy the so-called
Tuy data sufficiency condition [11] to avoid limited view
shading artifacts and 2) the view angle sampling density
must be dense enough to avoid aliasing artifacts which are
often present in reconstructed images as streaky artifacts.
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Fig. 1. (a) Helical trajectories with three revolutions around a given
reconstruction plane (shown in yellow) for each pitch. The illuminating
range for this plane is shown in solid black. (b) llluminating range of
image pixels along the line crossing the isocenter is plotted for different
helical pitches. (c) The star marks the illuminating range for the isocenter
as a function of pitch.

These conditions are used to ensure that there are sufficient
x-ray illuminations for each image voxel for the voxel to be
accurately reconstructed.

When helical CT is considered, the illumination of an image
voxel in a given reconstruction plane at z = z¢ is a function
of the helical pitch p. When p is increased, the angular range
of the x-ray illumination decreases. As shown in Fig. I(a) for
p =1, 2, 3, and 4, higher helical pitches result in smaller
angular illumination ranges of the voxel at isocenter on the
given reconstruction plane. Note that different image voxels
in the reconstruction plane may have different illuminating
ranges, but these also decrease with increasing pitch. This
is shown for the voxels along the lines passing through the
isocenter as shown in Fig. 1(b) for 6 different pitches from
p = 1 to p = 4. To highlight the decrease of illuminating
range, the change of illuminating range with helical pitch is
presented in Fig. 1(c). As one can see, the illuminating range
for the voxel at isocenter can go from fully illuminated at all
view angles at p = 1 down to about 90° for an MDCT scanner
with fan angle of y,, & 60°.

For helical trajectories, Fig. 1(b-c) shows sampling in the
plane remains at or above the short scan range for pitch p <
1.375 to satisfy the Tuy data sufficiency condition, but falls
below this threshold for higher pitches. As a result, analytical
reconstruction methods that in theory require sampling to at
least meet the short scan condition will yield limited view
artifacts in images reconstructed for pitch p > 1.375. Note
that, in practice, some sorts of data extrapolation schemes have
also been introduced by CT vendors to extend the helical pitch
up to p < 1.5.

B. Data Augmentation to Extend the llluminating Window
and FBP Reconstruction

The first step in our proposed high pitch helical reconstruc-
tion scheme is to reconstruct an initial image xg directly from
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Fig. 2. lllustration of the 3D FDK algorithm for helical scans. (a) The
source-detector system during helical acquisition is shown relative to a
given axial reconstruction plane. The range of views [t,, tp] illuminating
isocenter on the plane is colored with a thick orange line. Views outside
the detector FOV for this plane are colored with a thick blue line (within
the short scan range) or a thick gray line (outside the short scan range).
(b) The data filling scheme for the 2D sinogram to reconstruct the given
axial plane. The detector row vwhere isocenter projects onto the detector
is filled in 2D sinogram space according to the steps outlined.

the CT scan raw data using FBP. The specific algorithm in
this work is the 3D FDK [14] algorithm adapted for helical
trajectories. However, severe artifacts will be introduced due to
the illustrated high helical pitch reconstruction problem in the
previous section. In this work, data augmentation techniques
were introduced to first extend the illumination range of
all image voxels in the reconstruction plane to short scan
illuminating range. Then, a 3D FDK reconstruction, which
converts a 3D cone beam reconstruction problem into a series
of 2D fan beam reconstruction problems, is performed to
reconstruct the initial image Xp.

The steps to form the FBP image volume are given below
and are illustrated graphically in Fig. 2:

1) For a given reconstruction plane, find the range of views
[#4, tp] that illuminate isocenter on that plane.

2) For each view ¢ € [t,, 1], find the detector row v where
isocenter projects onto the detector plane.

3) Weight the data in row o by cost, where v =
arctan(v/S) and use the result to fill a single row of 2D
sinogram space at view t.

4) For each view t € [t1,t,] and t € [tp, 2] that does not
illuminate isocenter on the plane, use the top and bottom
row respectively for Step 3. Here, [#1, #2] defines a short
scan angular range of 180° + y,,.

5) For each view t € [fg,t1] and ¢t € [fp, to + 360°] that
does not illuminate isocenter on the plane, use a zero
row for Step 3. These ranges are outside the short scan
angular range centered on the plane.

6) Apply Parker weighting in the range [#1, ;] for the 2D
sinogram

7) Perform 2D fan-beam FBP reconstruction of the sino-
gram formed for this plane.

8) Repeat Steps 1-7 for every axial reconstruction plane in
the image volume.

To demonstrate the need for data extrapolation (step
4 above) in helical FBP, CT data was acquired for a Cat-
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Fig. 3. 3D FDK reconstructions both with and without extrapolation of
the Catphan phantom for an experimental helical scan with pitch 2. The
2D projected sinogram (a) is given Parker weights (b) and reconstructed
to the axial slice shown (c). The coronal image (d) is reformatted from
the reconstruction of 2D projected sinograms for all axial slices.

phan phantom (Catphan 600, Phantom Laboratory, Salem,
New York) on a 64 slice MDCT scanner (GE Discovery
CT750 HD, Waukesha, WI). The data was numerically col-
limated to yield a scan with helical pitch 2 and was recon-
structed both with and without data extrapolation. Results are
shown in Fig. 3. The phantom images have severe shading
artifacts using the FBP reconstruction without data extrap-
olation due to the limited angular range. The limited view
shading artifacts have been removed however in FBP with
data extrapolation.

C. Deep Learning to Correct FBP Reconstructed Images

Without further correction, the FBP reconstructed images
with data interpolations cannot be accurate. To correct these
FBP reconstructed images, a deep learning strategy was intro-
duced. We present the neural network architecture and our
training strategies in the following subsections.

1) Neural Network Architecture: The neural network was
designed to correct 2D image slices within the 3D volumes.
We used a multi-stage modular design where multiple U-Nets
[15] were stacked together in order to reduce the helical arti-
facts along the 2D axial image planes followed by correction
along the 2D coronal image planes. Each U-Net consisted
of 24 convolutional layers arranged in 4 vertical levels. The
network architecture is shown in Fig. 4.

The aforementioned stacked U-Net architectures were
trained for each given helical pitch values p = 2,3,4 and
for each detector configuration N, = 16, 32, 64 for 16-, 32-,
and 64-slice MDCT. As a result, a total of 9 separate artifact
removal networks were individually trained.

The output of the network had 288 x 288 x N, voxels with
the same resolution as the input with 545 mm in-plane field of
view (FOV) and 1 mm slice thickness (1.89 mm x 1.89 mm x
1.00 mm).

2) Training Strategy: The network was trained using a con-
ditional adversarial strategy [16], [17] where an adversarial
loss aims to minimize the L1-loss between input artifact
contaminated FBP images and the target clinical CT images
while maximizing an image discriminator cross-entropy loss
between the network output and clinical CT images to assure
that the artifact corrected images follow the same distribution
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