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Abstract

Background: Sparse-view CT image reconstruction problems encountered in
dynamic CT acquisitions are technically challenging. Recently, many deep learn-
ing strategies have been proposed to reconstruct CT images from sparse-view
angle acquisitions showing promising results. However, two fundamental prob-
lems with these deep learning reconstruction methods remain to be addressed:
(1) limited reconstruction accuracy for individual patients and (2) limited gener-
alizability for patient statistical cohorts.

Purpose: The purpose of this work is to address the previously mentioned chal-
lenges in current deep learning methods.

Methods: A method that combines a deep learning strategy with prior image
constrained compressed sensing (PICCS) was developed to address these two
problems. In this method, the sparse-view CT data were reconstructed by the
conventional filtered backprojection (FBP) method first, and then processed by
the trained deep neural network to eliminate streaking artifacts. The outputs
of the deep learning architecture were then used as the needed prior image
in PICCS to reconstruct the image. If the noise level from the PICCS recon-
struction is not satisfactory, another light duty deep neural network can then
be used to reduce noise level. Both extensive numerical simulation data and
human subject data have been used to quantitatively and qualitatively assess
the performance of the proposed DL-PICCS method in terms of reconstruction
accuracy and generalizability.

Results: Extensive evaluation studies have demonstrated that: (1) quantitative
reconstruction accuracy of DL-PICCS for individual patient is improved when
it is compared with the deep learning methods and CS-based methods; (2)
the false-positive lesion-like structures and false negative missing anatomical
structures in the deep learning approaches can be effectively eliminated in the
DL-PICCS reconstructed images; and (3) DL-PICCS enables a deep learning
scheme to relax its working conditions to enhance its generalizability.
Conclusions: DL-PICCS offers a promising opportunity to achieve personal-
ized reconstruction with improved reconstruction accuracy and enhanced gen-
eralizability.
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DL-PICCS FOR SPARSE VIEW CT

1 | INTRODUCTION

When a static image object is considered, there are no
fundamental issues in acquiring a complete and well-
sampled tomographic data set to reconstruct diagnostic
quality images in computed tomography (CT). However,
when the image object is not static during data acqui-
sition, it becomes extremely challenging’ to acquire a
complete and well-sampled data set to reconstruct the
image. To generate artifact-free images to perform clini-
cal tasks, one needs to either upgrade the hardware data
acquisition system to enable fast acquisition to allevi-
ate artifacts®>® or develop innovative image reconstruc-
tion techniques to reconstruct artifact-free tomographic
images from an incomplete or undersampled data
set."*78 Due to the technological complexity and the
associated cost to modify hardware acquisition systems
for fast acquisition, development of innovative image
reconstruction techniques to enable accurate image
reconstruction from an undersampled tomographic data
set remains one of the most active research areas in CT.

In the past 15 years, two different paradigms have
been developed to reconstruct CT images from severely
undersampled data. The first method is widely referred
to as compressed sensing (CS)% "2 In this method,
the reconstruction problem is formulated as a convex
optimization problem that includes both a data fidelity
term and an image sparsity promoting regularizer term.
When a numerical solver is used to iteratively solve
the optimization problem for image reconstruction, the
view angle undersampling-induced aliasing artifacts
are iteratively removed while the reconstructed image
is compared against the acquired data for corrections.
In the end, a final image is reconstructed to balance the
requirements of data fidelity and removal of aliasing
artifacts. The second paradigm was recently developed
to leverage the powerful statistical regression capacity
offered by deep neural network architectures, the avail-
ability of large amounts of training data, and also the
tremendous increase in computational power. This class
of methods is widely referred to as deep learning.'*
The following three general strategies have been devel-
oped in the last 5 years to address the sparse-view CT
reconstruction problem using deep learning methods:
One can use a deep neural network to transform the
aliasing artifact-contaminated images into the desired
artifact-free images,'®~'9 or use a deep neural network
to transform the sparse-view data set into a dense-
view data set and then apply the conventional filtered
backprojection (FBP) to reconstruct images??' or
use a deep neural network to directly transform the
sparse-view data set into artifact-free imagesZ222*
It is important to emphasize that, in addition to the
sparse-view CT reconstruction problems, the powerful
statistical regression capacity in deep learning can also
be exploited to address many other scientific problems

in CT such as noise reduction in general low-dose CT
applications,>>~2° or flexible regularizer design in the
aforementioned first paradigm 3948

The success of the current deep learning applications
in sparse-view CT reconstruction is largely due to the
impressive regression capacity offered by deep neural
network architectures. In statistical regression*>°° a
regression function is learned to capture the statistical
features among all the training data. In other words,
regression functions do not aim at a perfect fit of the
training data set. In fact, a variety of training strate-
gies have been deliberately introduced to avoid the
regression model fitting all the training data because
overfitted regression models generalize very poorly to
new input data.'*#?59 As a result of the fundamental
statistical nature in deep learning methods, not all
patient-specific features can be preserved in the output
images of the deep neural network. Although this might
not be a serious issue in nonmedical applications such
as natural language processing or computer vision
studies, it is indeed a fundamental issue that must be
carefully addressed in medical applications. Individual
patient-specific image features, for example, lesions,
are too important in medical diagnoses to be omit-
ted or modified in the reconstructed medical images.
After all, the central task in medical diagnoses is to
search for abnormal structures that deviate from the
common image representations in a patient population.
On the other hand, this statistical nature in regression
also leads to fundamental challenges in current deep
learning research, that is, the “generalizability issue.” As
regression models are derived from training data sets
with limited sample sizes, they only capture the statis-
tical features present within the training cohort. As a
result, when the derived regression models are applied
to new test data that may be collected under slightly
different conditions, the results of regression models
are less than optimal if not downright incorrect. This
again exacerbates the reconstruction accuracy issue.
To summarize, when a trained deep learning model
is applied to new test patient cases, reconstruction
accuracy drops as a natural result of the above two
fundamental issues related to the regression nature of
deep learning methods. Therefore, proper measures
must be developed in medical imaging to address
the two aspects of the patient-specific reconstruction
accuracy issue in deep learning method: accuracy and
generalizability.

As all patient-specific diagnostic information is intrin-
sically encoded into the measured projection data, a
key element in addressing the above issues in the deep
learning strategy is to check whether the reconstructed
images from the deep learning method are consistent
with the measured data from the individual patient.
Mathematically, this consistency check indicates that
one needs to rely on a data fidelity term as that in
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FIGURE 1 Workflow of the proposed DL-PICCS framework
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the conventional statistical image reconstruction (SIR)
methods.®! Therefore, it is natural to combine the deep
learning strategy with traditional iterative reconstruc-
tion methods because the data fidelity is frequently
checked in the conventional iterative image reconstruc-
tion method to ensure consistency. As a matter of fact,
numerical solvers of any iterative image reconstruction
algorithm can be un-rolled and incorporated into a deep
neural network architecture and the reconstruction
parameters can then be learned using training data,
or alternatively, the hand-crafted regularizers used in
the conventional iterative reconstruction algorithms can
be learned from the available training data as shown
in a large body of literature.30-48.52.53 |n this paper, we
propose a new pathway to combine a deep learning
reconstruction strategy with the previously published
prior image-constrained CS (PICCS) algorithm’® to
improve reconstruction accuracy for individual patients
and enhance generalizability for sparse-view recon-
struction problems. This method is referred to as deep
learning based PICCS (DL-PICCS), and we will show
that the proposed DL-PICCS framework provides us

a natural method to take advantage of both deep
learning and CS reconstruction methods to address the
aforementioned fundamental challenges encountered
in current deep-learning-based reconstruction methods.

2 | MATERIALS AND METHODS

2.1 | DL-PICCS reconstruction pipeline:
Design principles

The workflow of the proposed DL-PICCS is presented in
Figure 1. The workflow begins with the conventional FBP
reconstruction of undersampled sinogram data. A deep
neural network (U1) is trained to mitigate sparse-view
aliasing artifacts and produce an image with reduced
streaks and noise. This image is denoted as “U1-only”
in Figure 1. In this work, a modified version of U-Net>*
shown in Figure 2 is employed to accomplish this task.
However, one can choose any preferred neural network
architecture in the proposed DL-PICCS workflow. The
primary purpose of the deep neural network U1 is to
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eliminate sparse-view aliasing artifacts while preserving
image details. Therefore, this module can be considered
as a heavy-duty aliasing artifact removal module.

The output of the U1 network is then used as the
prior image in the PICCS reconstruction framework to
reconstruct the PICCS image using both the priorimage
produced from the U1 network and also the sparse-
view sinogram data for each individual patient. The out-
put of PICCS reconstruction is denoted as “PICCS-
U1” The primary purpose of the PICCS reconstruc-
tion module is to accomplish accurate reconstruction
for each individual patient by invoking the data fidelity
term.

With the proper choice of reconstruction parameters
in PICCS, as presented in the next subsection, both high
accuracy and streaky artifact reduction can be reached
in the PICCS-U1 image to improve reconstruction accu-
racy in individual patient image reconstruction. However,
the noise texture and noise level in PICCS-U1 images
may not be ideal for medical diagnoses. To improve
noise texture and noise level for the PICCS-U1 out-
put, another deep neural network architecture, “U2,” is
trained to improve the noise texture and noise level of
the PICCS output. The final output is referred to as U2-
PICCS-U1, that is, DL-PICCS.

In summary, a divide-and-conquer strategy is used
in DL-PICCS to comprehensively address the encoun-
tered challenges in the sparse-view CT reconstruction
problem: deep learning U1 module to eliminate streak-
ing artifacts, PICCS module to improve reconstruction
accuracy for individual patients, and deep learning U2
module to tune noise texture and noise level in the
final image.

2.2 | Brief review of PICCS: Algorithm
and pseudocode

The PICCS reconstruction framework'® can be formu-
lated as an unconstrained problem with a parameter 4,
weighting the data fidelity and regularizer terms>®

X = arg min[%HAx - y||%+
X (2.1)

(o] P9 (X = Xp)[[1 + (1 = )| [P2(X)[]1)].

Here, X denotes the reconstructed CT image, x,, denotes
the prior image, y denotes the sinogram data, A denotes
the system matrix, and D denotes the statistical weight-
ing. ¥4 and ¥, represent sparsifying transform operators
and || - ||4 denotes the L4 norm of the image vectors.
In this work, ¥4 and ¥, are selected to be the gradient
operators and the total variation (TV) norm of the image
object is used to implement the Ly norm operations.
The parameter a € [0, 1] controls the relative weights
between the prior image and TV terms. When « = 0,

the reconstruction method reduces to the TV-based SIR
(TV-SIR) method.>®

Many different numerical solvers can be used to solve
the unconstrained problem in Equation (1). In this work,
we present a solver that has not been formally published
for PICCS reconstruction. This solver uses the well-
known forward—backward proximal splitting scheme®’ to
split the unconstrained convex optimization problem into
two subproblems: The first one is to obtain an interme-
diate image from the data fidelity term only, and then,
this intermediate image is processed in the standard
denoising problem using proximal operators with the
regularizer in the PICCS objective function shown in
Equation (1). The denoising problem is solved using
the well-known alternating direction method of multipli-
ers (ADMMs) scheme % To facilitate potential third-party
result reproduction, the pseudocode of the final solver is
presented in the Supporting Information. For a detailed
derivation of the solver, one can follow the mathemati-
cal steps presented in the Appendix of Ref. 59, but with
the PICCS regularizer using total variation as its sparsi-
fying transforms as a replacement for the TV regularizer
in Ref. 59.

2.3 | Curation of training data sets and
performance evaluation data sets

All the training data used in this work were gener-
ated from numerical simulations of human subject CT
image volumes by numerical forward projection opera-
tions. A total of 9765 CT image slices from 30 cases
of abdomen and contrast-enhanced chest CT exams
were used to generate sinogram data for training, val-
idating, and testing purposes. Among the 9765 image
slices, we selected 8483 image slices from 26 patient
cases to generate data for training and 834 slices from
two patient cases for validation purposes, whereas the
remaining 448 images slices from two patient cases
were used to generate the data set for test and perfor-
mance evaluation purposes. U1 was trained with paired
undersampled FBP and ground truth data and U2 was
trained with paired PICCS-U1 output and ground truth
data.

The standard ray-driven numerical forward projec-
tion procedure®® was used to produce the sinogram
data using a fan-beam geometry. To facilitate the perfor-
mance evaluation (described in next subsection) from
clinical cases acquired from a 64-slice CT scanner
(Discovery CT750 HD, GE Healtcare, Waukesha), all
the simulation data generation used the same scan-
ner geometry: detector size, source-to-detector distance,
and source-to-isocenter distance. Poisson noise was
added to the simulated sinogram data. The noise level in
each CT image is determined by the total photon num-
ber, that is, total fluence (TF) level, delivered to the sub-
ject in each CT data acquisition and the total photon
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TABLE 1 Summary of four total fluence levels (unit: counts)
Standard dose Moderate dose Low dose Ultra-low-dose
TF,(x108) TF3(x10%) TF4(x10%) TF5(x10%)
Entrance fluence/view 1.0 5.0 3.0 1.0
Total fluence 123-view 123x 1.0 123 % 5.0 123x 3.0 123x 1.0
Total fluence 82-view 82x15 82x75 82x4.5 82x1.5
TABLE 2 Parameters for PICCS reconstruction in DL-PICCS framework
Parameters TF4 TF, TF3 TF, TF5
123-view v 0.70 0.70 0.70 0.70 0.70
a 0.71 0.71 0.71 0.71 0.71
u 50x107° 8.0x10™* 21x1073 22x1073 50x1073
A 25 12 15 15 4
Ny 30 30 30 30 30
82-view v 0.70 0.70 0.70 0.70 0.70
a 0.71 0.71 0.71 0.71 0.71
u 6.0x107° 6.0x107* 2.0x 1073 3.0x1073 3.0x1073
A 3 5 15 14 3
Ny 30 30 30 30 30

number is determined by the number of view angles
(Nangle) and entrance photon fluence (/p, unit: counts)
at each view angle, that is, TF = Napgie X I with counts
as the unit. In this study, Nangee € {984, 123,82} and
four entrance photon fluence levels were used: standard
dose (Ip = 1.0 x 108), moderate dose (/y = 5.0 x 10°),
low dose (I = 3.0 x 10%), and ultralow dose (I = 1.0 X
10°). This choice of entrance photon fluence level is to
roughly match the noise level in the FBP reconstructed
image with Npngie = 984 for the aforementioned 64-slice
CT scanner: 35 HU (standard dose), 45 HU (moder-
ate dose), 66 HU(low dose), 90 HU (ultralow dose). For
later references, the four TF levels were kept the same
for both the 123-view and 82-view acquisitions and are
given in Table 1. In both cases, the notation TF, is
reserved for the noiseless case.

2.4 | Numerical implementation details
FBP reconstruction was performed for each TF setting
using an image matrix of 512 x 512 and a reconstruction
field-of -view (FOV) of 40 cm diameter.

The FBP-reconstructed images for 123-view and 82-
view angle images were paired with the corresponding
FBP-reconstructed images from 984 view angle images
at each entrance photon fluence level to form training
data pairs and used to train the U1 module shown in
Figure 1.

PICCS reconstruction was performed using the pseu-
docode presented in the Supporting Information and
the reconstruction parameters are presented in the

following Table 2. The PICCS reconstruction param-
eters listed in Table 2 were empirically optimized to
achieve natural noise texture in visual perception. The
stopping criterion for the PICCS reconstruction was set
as the relative changes between two iterations, that is,

[1Xn+1—Xnll < 0.0009.

[1Xnll
The network training of U1 and U2 utilized the same

strategy, using the Adam optimizer with § = 0.5, learn-
ing rate of 1 x 10~4, which was decreased to 10~° after
50 epochs, for a total of 60 epochs. The loss function
uses the mean absolute error (L1 Loss), which can be
described in the following form:

1 N
Loss = N Z |Xoutput,i - Xtarget,i|’
i=1

where N represents the number of data points in the
training data cohort. Xotpyt,; denotes the network output
image and X¢rget,i denotes the target image.

2.5 | Generalizability test (I): From
numerical simulation to clinical human
subject data

Both the U1 and U2 deep neural network architectures
in DL-PICCS were trained using numerical simulation
data described in Section 2.3. These simulations were
performed at very precise view angle positions and
only trained over four different radiation exposure levels.
Therefore, if the trained U1 and U2 modules are directly
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applied to reconstruct images from actual clinical patient
cases, that is, the sinogram data acquired from clinical
CT scanners, one would not expect accurate image
reconstruction for the individual human subject. To test
the generalizability of the simulation data-trained U1
and U2 modules to perform clinical data reconstruction,
data from abdominal CT exams under the Institutional
Review Board (IRB) approval were retrospectively
extracted from a 64-slice multirow detector CT (Dis-
covery CT 750HD, GE Healthcare, Waukesha) to test
the proposed DL-PICCS reconstruction performance
at 123-view angle condition. Note that the clinical CT
scans produce 984 view angles in the sinogram, we
retrospectively parsed the fully sampled sinograms
into the corresponding 123-view angle sinograms for
performance evaluation purposes.

The difficulty of this generalizability test lies in the
changes of data acquisition conditions from the train-
ing data of the U1 and U2 modules to the actual clinical
data that are summarized as follows:

1. The starting view angles in experimental data are dif-
ferent from those in training. Hence the orientation of
streak artifacts of the testing experimental data sets
is different from that of the training data.

2. The potential inclusion of external objects, for exam-
ple, contrast injection devices and ECG, yields differ-
ent streaking artifact patterns. Particularly, the streaks
originating from the external objects are more domi-
nant.

3. Experimental data have different noise conditions
(the noise condition in Human 2 roughly corresponds
to the moderate-dose level in training with noise
standard deviation of 45 HU measured in a uni-
form region. Human 1 and 3 are noisier with noise
standard deviation of 70 HU in uniform regions,
which is considered as low-dose scans in clinical
practice).

4. CT couch also changes data conditions if it is not rep-
resented in training data.

2.6 | Generalizability test (ll):
Replacement of the U1 module by a
different trained network in DL-PICCS

To further test the generalizability of the proposed DL-
PICCS framework, the following question needs to be
addressed: Can one replace the U1 module by another
deep neural network architecture trained by external
researchers? The difficulty of the test lies in the fact that
the training data set can be very different from the perfor-
mance test data because the U1 module will be trained
by different people, and thus, the data acquisition con-
ditions of the training data can be dramatically different
from the test data.

To answer this question for the generalizability test
of the proposed DL-PICCS method, we replaced the
U1 module with a network trained by another group
and made publicly available: the tight-frame U-Net'®
(https://github.com/hanyoseob/framing-u-net). Note that
the available tight-frame U-Net was trained using sim-
ulated parallel-beam CT data and 120 view angles,
whereas the actual test cases described in Section 2.5
were acquired in a cone-beam geometry with 123 view
angles and with totally different noise conditions. It is
expected that the direct generalization from the trained
tight-frame U-Net to our clinical data set will not work
well. Therefore, the real question is whether the pro-
posed DL-PICCS method will help correct the output
of the trained tight-frame U-Net for clinically accurate
reconstruction? In this work, we refer to the tight-frame
U-Net as TightU. Also to avoid confusion, we refer to DL-
PICCS with only U1 replaced by TightU as U2-PICCS-
TightU.

2.7 | Quantitative reconstruction
accuracy evaluation metrics

To quantify the reconstruction accuracy, two standard
quantitative metrics, for example, relative root mean
square error (rRMSE) and structural similarity index
metric (SSIM)®" are used in this paper. These metrics
are defined as follows:

[1X — Xoll2

rRMSE(x, xg) = oIl

x 100%, (2.2)
where x denotes the reconstructed image and xg
denotes the ground truth or reference image.

(Z#XMXO + ay )(2O'x,x0 + 32)
(KE + 13, +ar)(0F + 0% +ay)

SSIM(x, xg) = (2.3)

where u, denotes the mean value of image x, oy
denotes the variance of X, and similar properties are

defined for the reference image Xq. o, 4, denotes the

covariance of xand xg.a; = 1x 10~ %anda, = 3x 10~
are two constants that are used to stabilize the divi-
sion with a small value in the denominator. To calculate
the sample mean and variance used in the above for-
mula, we use an 11 x 11 circularly symmetric Gaussian
weighting function with a standard deviation of 1.5 pix-
els, normalized to a unit sum. 8" The full FOV of animage
was used to calculate all quantification metrics.

Besides the quantitative performance evaluation,
noise textures and clinically relevant lesions were
also qualitatively assessed in zoomed-in images. The
magnified images can help to visually inspect false
positive and false negative lesions in reconstructed
images.
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3 | RESULTS

3.1 | Quantitative reconstruction
accuracy of DL-PICCS: Compared with
ground truth in numerical simulation test
data set

To assess the reconstruction accuracy of the proposed
DL-PICCS, the 448 image slices in the test data cohort
generated in numerical simulations were reconstructed
and compared against the ground truth images that
were reconstructed from the fully sampled sinogram
data with 984 view angles using the FBP algorithm.

Figure 3 shows the reconstruction results of a rep-
resentative sinogram with 123 views at the moderate
dose level, reconstruction results from direct FBP recon-
struction, from U1 module (U1-only), from PICCS with
U1 output as the prior image (PICCS-U1), and then fur-
ther refined image by U2 module (DL-PICCS). For com-
parison, the same data were also reconstructed using
TV-SIR with setting = 0 in PICCS. The implementa-
tion of TV-SIR was optimized to achieve the best rRMSE
compared with ground truth with the parameter a = 0.
As one can observe in Figure 3, the streaking artifacts
present in the stomach (indicated by A3) and spleen
(indicated by A4) regions were removed in the U1-only
image, and the residual edges in the U1-only image were
reduced in PICCS-U1 image, and finally, the noise level
in PICCS-U1 image is further reduced in the DL-PICCS
image. As a comparison, TV-SIR reconstruction indeed
eliminated streaking artifacts and reduced noise levels
as one expects from CS-type reconstructions. However,
residual image edges are clearly observed in the TV-SIR
difference image.

Zoomed-in regions labeled by A1 and A2 highlight
the low-contrast hepatic portal veins. Both anatomical
regions were precisely reconstructed in PICCS-U1 and
DL-PICCS with greatly reduced background streaks and
noise. Visual perception also demonstrates that DL-
PICCS restored the distorted low-contrast objects in
terms of the shape, size, and contrast, eliminated the
residual streaks compared with U1-only, and reduced
uniform noise level in the PICCS-U1 images.

Quantitative reconstruction accuracy results are pre-
sented in Table 3. As shown in the results, DL-PICCS
reconstruction shows the best reconstruction accuracy
as quantified by both quantitative image quality evalua-
tion metrics: rRMSE and SSIM.

Results regarding the generalization of DL-PICCS to
other anatomical structures are presented in Figure 4.
Figure 4 shows an example for upper gastrointestinal
(GI) CT imaging. It can be observed that major Gl struc-
tures and detailed small structures such as the vessels
in the upper peripheral fat region (zoomed-in by B1),
the details in the muscle on the right side of the image
(zoomed-in by B2), were well reconstructed in PICCS-

TABLE 3 Quantitative analysis for simulation studies using
123-view moderate-dose data

Case Method rRMSE(%) SSIM
Liver DL-PICCS 2.69 0.973
PICCS-U1 3.20 0.962
U1-Only 3.27 0.965
TV-SIR 3.80 0.959
FBP 13.40 0.610
Upper Gl DL-PICCS 2.20 0.979
U1-only/UNet 2.63 0.972
PICCS-U1 2.59 0.971
TV-SIR 3.32 0.964
FBP 11.60 0.641

U1 and DL-PICCS images. Compared with PICCS-U1,
DL-PICCS shows improved noise performance. How-
ever, the U1-only method and TV-SIR missed vessels in
B1 and the muscle details in B2. Quantitative results are
presented in Table 3 and demonstrates that DL-PICCS
can be effective and robust when applied to reconstruc-
tion of different anatomical structures.

3.2 | Change of reconstruction accuracy
under different dose conditions

To study how the reconstruction accuracy of DL-PICCS
changes with different radiation dose levels, images at
different TF) levels were reconstructed at a fixed number
of view angles. Figure 5 presents the DL-PICCS recon-
structed abdominal images with the liver present under
five different dose conditions for the 123-view case and
the 82-view case. As one can visually observe, as the
dose level is reduced, reconstruction accuracy drops. As
a result,some low-contrast content cannot be accurately
restored and unnatural noise textures begin to appear if
the radiation dose is too aggressively reduced. There-
fore, for any reconstruction scheme, it is important to
map out the potential working conditions for the algo-
rithm. There is no exception for the proposed DL-PICCS.

The quantitative reconstruction accuracy at different
dose levels has been studied for DL-PICCS at both the
82-view and 123-view cases and the results are pre-
sented in Figure 6. As shown in both rRMSE and SSIM
plots, when the radiation dose level is reduced, the quan-
titative reconstruction accuracy drops. For a specific clin-
ical diagnostic task, the requirement of reconstruction
accuracy can also be different. Therefore, it is difficult to
set a universal purpose hard-threshold for reconstruc-
tion accuracy. However, for a given selection of recon-
struction accuracy, the quantitative results shown in Fig-
ure 5 can help determine the optimal dose level.
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FIGURE 4 DL-PICCS reconstruction pipeline of an upper Gl image slice under moderate-dose condition using 123-view sinogram data.
Column (a) reconstructed images; (b) zoomed-in images specified by B1 and B2; and (c) difference images. Display window W/L: 350/50 HU.

Difference image display window W/L:200/0 HU

3.3 | Generalizability test (I): From
simulation trained network to clinical
human subject data

To test generalizability, the trained U1 and U2 modules
using numerical simulation data were used in the pro-
posed DL-PICCS to reconstruct three human clinical
cases. Results of 123-view reconstruction are presented

in Figure 7. The reference images were reconstructed
from FBP using all 984 view angles.

As shown in all three clinical cases, while the U1-only
image can effectively eliminate sparse-view streaking
artifacts and significantly reduce noise in FBP images,
potential generalizability issues resulting from the sta-
tistical regression nature of deep learning methods are
also clearly shown in the U1-only images. As shown in
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FIGURE 5

FIGURE 6

DL-PICCS FOR SPARSE VIEW CT

Standard-dose

Moderate-dose

123-view

Low-dose

Ultra-low-dose

Undersampling reconstruction under different TF levels for both 123-view and 82-view DL-PICCS reconstruction. As the TF
level becomes lower, the performance of DL-PICCS degrades. Display window W/L: 400/50 HU. Residual image display window W/L:200/0 HU
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Ul-only

Patient I

Patient II

FIGURE 7

Reconstruction pipeline of three real human abdomen cases using 123-view sinograms. Four stages of reconstruction are

specified and their zoomed-in images, C1,D1, D2, E1, E2, are below. Display window W/L: 400/50 HU. Residual image display window WI/L:

200/0 HU

the zoomed-in images of the first subject, the two hep-
atic veins of the liver in region C1 are removed in the
U1-only image. In the DL-PICCS image, not only are
the hepatic veins restored, but also the noise texture
and noise level are significantly improved compared to
the PICCS-U1 reconstruction. In the second subject, a
false positive lesion is generated in the U1-only image,

distorted and generated structures are present in the
zoomed-in uniform regions in the liver as indicated by
the yellow arrows. In contrast, the final output from DL-
PICCS removed those false positive structures in the D1
and D2 regions. Overall, the DL-PICCS images restored
the correct anatomical structures and eliminated most
of the noise and streaking artifacts present in the FBP
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TABLE 4 Quantitative analysis for generalizability test (II):
DL-PICCS reconstruction with U1 replaced by TightU

Case Method rRMSE(%) SSIM
Liver U2-PICCS-TightU 2.81 0.971
PICCS-TightU 3.95 0.945
TightU-Only 3.86 0.953
FBP 13.40 0.610

images and PICCS-U1 images. In the third clinical case,
the U1-only image failed in reconstructing the liver as
multiple lesion-like objects are present while they are not
present in the reference image shown by the zoomed-in
areas E1 and E2. In contrast, the DL-PICCS reconstruc-
tion successfully identified and removed these false pos-
itive lesions.

3.4 | Generalizability test (ll):
Replacement of U1 network in DL-PICCS

To further challenge the generalizability of DL-PICCS,
the U1 segment was replaced by the publicly available
trained TightU to process the numerically simulated
cases presented in Figure 3. As shown in Figure 8,
it is actually amazing to see how well the tight-frame
U-Net performed in this extremely challenging test.
Most of the sparse-view streaking artifacts in the FBP
reconstruction were eliminated by TightU, although the
reconstruction accuracy is not ideal as shown in the
difference image. Residual edges for large and small
anatomical structures are present in the difference
image indicating the reduced reconstruction accuracy
and degraded spatial resolution. When the TightU-only
image is further processed with PICCS to produce the
PICCS-TightU image, the reconstruction accuracy is
improved and the final results with U2-PICCS-TightU
are further improved. The quantitative reconstruction
accuracy was studied and results are presented in
Table 4.

The same generalizability test was then applied to
the human subject cases to test whether DL-PICCS
is able to reconstruct clinically acceptable images in
clinical cases. As one can visually observe in Fig-
ure 9, U2-PICCS-TightU indeed improves the recon-
struction quality for TightU and PICCS-TightU, show-
ing the improved reconstruction accuracy and improved
generalizability.

3.5 | Ablation studies of the proposed
DL-PICCS workflow

In the proposed DL-PICCS workflow, as emphasized in
the design rationale, it is a divide-and-conquer strategy
that has been used to eliminate streaking artifacts and

to reduce the final noise level. One may wonder whether
the same trained network U1 with streak-elimination
functionality can also be applied to perform noise reduc-
tion in the place of U2. As shown in Figure 10 denoted
by U1-PICCS-U1, without further network parameters
optimization, it is clear that the reconstructed image
is overly smooth due to the use of the heavy-duty U1
rather than the light-duty U2 network. To demonstrate
the role played by PICCS in the proposed DL-PICCS
workflow, as shown in Figure 10, the PICCS reconstruc-
tion step is eliminated from the DL-PICCS workflow to
generate the result of U1-U2. It can be observed that
the simplified U1-U2 reconstruction generates blurred
low-contrast structures and eliminates some important
image features. Finally, to demonstrate the potential
importance of the weighting factor, that is, the strength
parameter a in PICCS, the reconstruction results from
two extremal values, « = 0.0 and « = 1.0, are also
presented in Figure 10. As one can clearly observe,
residual streaking artifacts emanating from the center
to the peripheral are clearly visible and the noise level
is also high in the a = 0.0 case, that is, if the streak-free
prior image is not used. In contrast, when o = 1.0 is
chosen, some subtle hepatic veins in the reconstructed
images are blurred when they are compared to the
empirically optimized case of a = 0.71 as suggested in
this work.

4 | DISCUSSION

In this work, deep learning reconstruction strategies
were combined with PICCS to address the reconstruc-
tion accuracy and generalizability issues present in
current deep learning-only image reconstruction strate-
gies for sparse-view CT reconstruction problems. The
results demonstrate the following findings: (1) When
a deep learning reconstruction method was applied
to reconstruct sparse-view CT data, the reconstructed
images were subject to structural loss and distortion,
residual streaks, and degraded spatial resolution. When
the proposed DL-PICCS is applied, reconstruction
accuracy is improved with better noise texture, and
elimination of streaks while preserving the low-contrast
veins in the liver. (2) The U1 and U2 networks trained
with numerical simulation data can be directly applied
to experimental data sets with very different data con-
ditions, including different starting view angles, different
undersampling patterns, and different noise levels, with-
out significant degradation in reconstruction accuracy.
(3) The U1 network can even be replaced by other
trained networks available with similar functionality, as
long as the sparse-view aliasing artifacts can be effec-
tively eliminated by the replaced network architecture,
the proposed DL-PICCS is able to reconstruct images
with improved reconstruction accuracy to enhance the
generalizability of the U1 network.
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DL-PICCS reconstruction pipeline, replacing U1 with TightU. The example shows a 123-view reconstruction of the liver. Column

a) reconstructed images; b) zoomed-in images; c) difference images. The output of TightU is decent, but suffered from a slight loss of resolution
and structure. It served as the prior image in DL-PICCS framework. The final outcome of DL-PICCS in the zoomed-in area restored the
resolution and the veins with natural noise texture. Display window W/L: 400/50 HU. Residual image display window W/L: 200/0 HU

There are several other limitations of this work. First,
the number of test cases are limited, it is important to
test the performance of the proposed DL-PICCS more
extensively over a large cohort of patients. Second, the
data acquisition conditions are still limited to step-and-
shoot circular acquisitions, it remains to be investigated
how well the proposed DL-PICCS works for helical
data acquisition conditions. Third, implementation of

the DL-PICCS is not yet optimized for reducing the total
reconstruction time. Although the focus of the current
work is on reconstruction accuracy and generalizability,
it is also important to reduce the total processing time
of the proposed DL-PICCS for future clinical tests.
Fourth, there exist other possible ways to combine
the deep learning reconstruction with iterative image
reconstruction algorithms 30485253 and therefore, it is
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FIGURE 9

Reconstruction pipeline of three real human abdomen cases using 123-view sinograms, replacing U1 with its counterpart

TightU. Four stages of reconstruction are specified. Display window W/L: 400/50 HU. Residual image display window W/L: 200/0 HU

interesting, but much more challenging, to compare the
performance of the proposed DL-PICCS with other pos-
sible combinations in terms of reconstruction accuracy,
generalizability, and reconstruction time. These more
thorough comparative studies are beyond the scope of
the current work. Fifth, in the current DL-PICCS frame-
work, a consistency check between the output of U2
and the measured projection data was not performed,
as it was for the output of U1. This choice was due
to the fact that the primary purpose of the U2 module
is to perform light-duty noise reduction, and thus, the
additional consistency check may bring noise back into
the reconstructed image from the high-noise projection
data. Additionally, we did not perform generalizability
test for the U2 module due to the above design objective:
a light-duty module to slightly reduce noise. Therefore,
we did not anticipate any severe challenges in its gen-
eralizability. However, in specific applications, the gen-
eralizability of the U2 module should be monitored and

model fine-tuning should be performed whenever it is
necessary. Finally, the U1 and U2 modules in the current
DL-PICCS implementations were trained separately,
one can also perform end-to-end training for the entire
DL-PICCS pipeline. The PICCS reconstruction step can
be treated as a frozen module that does not impact the
backpropagation step in the network training process.

5 | CONCLUSION

In conclusion, deep learning-only reconstruction meth-
ods have intrinsic limitations in reconstruction accuracy
and generalizability to individual patients due to the
regression nature of the method. The combination of
deep learning methods with the previously published
PICCS offers a promising opportunity to achieve per-
sonalized reconstruction with improved reconstruction
accuracy and enhanced generalizability.
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FIGURE 10 Reconstruction examples of different configurations of DL-PICCS modules on the first row and different selections of prior
image weight in the second row. Display window W/L: 400/50 HU
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