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Abstract
Background: In recent years, deep learning strategies have been com-
bined with either the filtered backprojection or iterative methods or the direct
projection-to-image by deep learning only to reconstruct images.Some of these
methods can be applied to address the interior reconstruction problems for cen-
tered regions of interest (ROIs) with fixed sizes. Developing a method to enable
interior tomography with arbitrarily located ROIs with nearly arbitrary ROI sizes
inside a scanning field of view (FOV) remains an open question.
Purpose: To develop a new pathway to enable interior tomographic reconstruc-
tion for arbitrarily located ROIs with arbitrary sizes using a single trained deep
neural network model.
Methods: The method consists of two steps. First, an analytical weighted back-
projection reconstruction algorithm was developed to perform domain transform
from divergent fan-beam projection data to an intermediate image feature
space, B(x⃗), for an arbitrary size ROI at an arbitrary location inside the FOV.
Second, a supervised learning technique was developed to train a deep neu-
ral network architecture to perform deconvolution to obtain the true image f (x⃗)
from the new feature space B(x⃗). This two-step method is referred to as Deep-
Interior for convenience. Both numerical simulations and experimental studies
were performed to validate the proposed Deep-Interior method.
Results: The results showed that ROIs as small as a diameter of 5 cm could
be accurately reconstructed (similarity index 0.985 ± 0.018 on internal testing
data and 0.940 ± 0.025 on external testing data) at arbitrary locations within
an imaging object covering a wide variety of anatomical structures of different
body parts. Besides, ROIs of arbitrary size can be reconstructed by stitching
small ROIs without additional training.
Conclusion: The developed Deep-Interior framework can enable interior tomo-
graphic reconstruction from divergent fan-beam projections for short-scan and
super-short-scan acquisitions for small ROIs (with a diameter larger than 5
cm) at an arbitrary location inside the scanning FOV with high quantitative
reconstruction accuracy.
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1 INTRODUCTION

The tomographic CT image reconstruction problems
using fully truncated divergent beam projection data
are notoriously difficult and generally referred to as
interior tomography problems.1 In practical applica-
tions, accurate region of interest (ROI) reconstruction
from fully truncated divergent beam projection data
offers potential advantages in reducing the patient
dose, reducing scattered radiations induced artifacts
and allowing the scanning of large image objects such
as obese patients. It also has the potential use for tumor
visualization and dose verification in image-guided radi-
ation therapy. However, due to the nonlocal nature of
the filters used in the conventional filtered backprojec-
tion (FBP) reconstruction algorithms,a direct application
of FBP reconstruction to interior tomography acquisition
inevitably lead to strong truncation artifacts. Thus, it is
highly desirable to investigate new pathways to address
the interior tomography reconstruction problems.

If the acquired divergent beam projection data are
not as fully truncated in interior tomography recon-
struction problems, significant progress has been made
in the past two decades with the discoveries of new
analytical reconstruction schemes either in FBP or in
differentiation back projection (DBP) frameworks. In par-
ticular, when the DBP framework is employed, one can
focus on reconstructing image points along straight
lines crossing the image object. The DBP functions
along these straight lines have some profound analyt-
ical properties.2 Using the analytical properties of the
DBP functions, with some additional a priori knowledge
of the interior regions, it has been proven that a stable
solution exists3–6 albeit there is no analytical solution
available to perform interior tomographic reconstruc-
tion yet. But one can always reconstruct these stable
ROIs using iterative image reconstruction algorithms as
shown in literature.5,7–13 Other types of a priori knowl-
edge, such as the assumption of piecewise constant
or piecewise polynomial14 of the image objects, have
also been incorporated to enable interior tomography
reconstructions.15–21 When a reliable prior image of
the target image object is available, one can use the
prior image constrained compressed sensing (PICCS)22

framework to address the interior tomography recon-
struction problems.23 When the acquired divergent
beam projection data are not fully truncated, analyti-
cal reconstruction or iterative reconstruction methods
have been developed to reconstruct local ROIs.2,24–28

Besides the mathematically exact methods, approxi-
mation methods can also be utilized in practice to
perform good-quality local ROI reconstructions29–31 in
some applications.

In recent years, impressive advances have also been
achieved in deep-learning CT reconstructions. These
big-data-driven deep learning approaches offered
tremendous flexibility to incorporate a priori information
of the image object without needing an analytical math-

ematical expression. The a priori knowledge learned
from a well-curated training data set can be incor-
porated into the image reconstructions. Specifically,
the deep learning approach has been combined with
either the FBP reconstruction framework or DBP recon-
struction framework32 to address many challenging
reconstruction problems, such as low dose reconstruc-
tion and sparse view reconstruction problems. One
can also develop an algorithm to reconstruct images
directly from acquired projection data in an end-to-end
trained deep neural work such as the iCT-Net pro-
posed by the authors.33 Some of these deep learning
methods33–37 have also demonstrated the feasibility of
interior tomographic image reconstructions. However,
neither method shows that a trained deep neural net-
work architecture could be applied to perform interior
tomography reconstruction with arbitrarily selected ROI
locations with consistent reconstruction accuracy. The
primary purpose of this work is to present a method to
enable one trained deep neural network architecture
to perform interior tomography reconstruction with
arbitrary ROI locations with uniform high reconstruction
accuracy, even for ROIs with diameters as small as
5.0 cm. This contrasts what has been accomplished in
literature34 that a trained deep neural network archi-
tecture was applied to the different ROI sizes with the
same central location.

The new scientific contributions of this work can be
summarized as follows. First, a weighted backprojec-
tion algorithm is derived to reconstruct a backprojection
image, B(x⃗), which is the convolution of the target image
function f (x⃗) with a shift-invariant blurring kernel K(x⃗) =

1||x⃗|| , that is, B(x⃗) = (f ⊛ K)(x⃗). Note that this result is

known for parallel beam projection data with the Tuy
data sufficiency condition38–40 and the fan-beam pro-
jection data for a full scan angular range of 360◦.41

However, to the best of the authors’ knowledge, similar
results have not been known for either the short-scan
or super-short-scan fan-beam cases. Second, a deep
learning method was developed to reconstruct target
images from the blurred weighted backprojection image
B(x⃗). After the deep learning architecture is properly
trained, the trained neural network can be applied to
reconstruct the target function f (x⃗) from B(x⃗).

2 WEIGHTED BACKPROJECTION
IMAGE AS A CONVOLUTION BETWEEN
THE TRUE IMAGE FUNCTION AND A
SHIFT-INVARIANT KERNEL FOR
SHORT-SCAN AND SUPER-SHORT SCAN
ACQUISITIONS

2.1 Mathematical notations of data
acquisition geometry

Considering a 2D situation x⃗ = (x, y), suppose function
f (x, y) has a compact support , that is, f (x, y) ≡ 0 for
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948 DEEP INTERIOR

F IGURE 1 Mathematical notations for the fan-beam CT acquisition to obtain the measured projection data gm(t, 𝛾) and the corresponding
parameterization in terms of (𝜌, 𝜃) (Left panel); and the corresponding backprojection to obtain B(x⃗) at a point x⃗ (Right panel). The source
trajectory is circular with a radius of R.

∀(x, y) ∉ . The line integral data of function f (x, y)
along a straight line 𝓁 parameterized as 𝓁 : x cos 𝜃 +
y sin 𝜃 − 𝜌 = 0 is given by the following integral:

P𝓁(𝜌, 𝜃) = ∬
dxdyf (x, y)𝛿(x cos 𝜃 + y sin 𝜃 − 𝜌), (1)

where 𝛿(⋅) is the Dirac δ–function in the sense of
distributions.𝜌 is the distance from the origin of the coor-
dinate system (Figure 1) to the straight line 𝓁, and 𝜃
denotes the angle from the x-axis.

In divergent fan-beam acquisition geometry (Figure 1)
with a circular trajectory with radius R, coordinates of
the source S are denoted as (R cos t, R sin t) where t is
the angle from the x-axis to the iso-ray, OS. The same
straight line 𝓁 is parameterized by the source parameter
t and projection angle 𝛾, measured from the iso-ray OS
to the straight line 𝓁. Note that 𝛾 is negative shown in
Figure 1. The transformations between the two sets of
parameters (t, 𝛾) and (𝜌, 𝜃) are given as below:

𝜃 =
𝜋

2
+ t + 𝛾, 𝜌 = −R sin 𝛾. (2)

Similarly, if a linear detector is used, the same straight
line is often parameterized by the source angle t and
detector coordinate u. In this case, all one needs to do
is to define the projection angle 𝛾 as 𝛾 = arctan u

SDD
in

the curved detector case, where SDD is the source-
to-detector distance. Note that the line integral value
P𝓁(𝜌, 𝜃) does not change when the same straight
line is parameterized in terms of fan-beam geome-
try using parameters (t, 𝛾). For convenience, we denote
the integral value as the measured projection data
gm(t, 𝛾):

P𝓁(𝜌, 𝜃) = gm(t, 𝛾), (3)

for the parameter transformations shown in Equa-
tions (2).

2.2 Direct backprojection from
parallel-beam acquisition geometry and
generalization to the full-scan fan-beam
acquisitions

In preparation for a comparison between widely rec-
ognized results in literature and our findings to be
discussed in the subsequent subsection, we begin by
defining the direct backprojection image B∥(x⃗) using
the parallel-beam projection data as represented in
Equation (1):

B∥(x, y) = ∫
𝜋

0
d𝜃P𝓁(𝜌, 𝜃)|𝜌=x cos 𝜃+y sin 𝜃,

= ∬ dx
′
dy

′
f (x

′
, y

′
)∫

𝜋

0
d𝜃𝛿[(x

′
− x) cos 𝜃 + (y

′
− y) sin 𝜃],

= ∬ dx
′
dy

′
f (x

′
, y

′
)

1√
(x − x′ )2 + (y − y ′ )2

,

= f (x, y)⊛
1√

x2 + y2
. (4)

This equation represents classical results initially dis-
covered by Bates38 in 1971, subsequently included
in standard textbooks.39,40 Specifically, it elaborates
that the direct backprojection of the obtained parallel-
beam projection data defined in Equation (1) using the
direct backprojection defined in Equation (4) results
in a backprojection image equivalent to the convolu-
tion of the true image f (x, y) with a two-dimensional
one-over-distance kernel.
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DEEP INTERIOR 949

Using the same direct backprojection defined in
Equation (4),Gullberg41 showed that the direct backpro-
jection of fan-beam projection data acquired over a 2𝜋
angular range:

B2𝜋(x⃗) =
1
2 ∫

2𝜋

0
dt gm(t, 𝛾)|𝛾=𝛾0(x⃗,t), (5)

can also be shown to be equal to the convolution
between the true image function f (x, y) and the one-
over-distance 2D filter:

B2𝜋(x⃗) = f (x, y)⊛
1√

x2 + y2
(6)

The factor of 1

2
introduced in Equation (5) accounts for

the data redundancy in full scan acquisitions. To the
authors’ best knowledge, over the past four decades,
Gullberg’s results for full-scan fan-beam acquisitions
have not been extended to scenarios where the angu-
lar scan range is less than 2𝜋. We present a detailed
derivation of the above findings in Appendix C. Our
derivations unequivocally reveal that the aforemen-
tioned results (Equation (5) and Equation (6)) for the
full-scan fan-beam data acquisition arise from a unique
geometrical identity. Importantly, this identity holds true
only for full scan acquisitions and is not applicable
when the scan’s angular range is shorter than 2𝜋.
This provides a clear explanation for why the afore-
mentioned result has not been successfully extended
to scenarios where the angular scan range is less
than 2𝜋.

2.3 A weighted backprojection scheme
to enable the generalization of result
shown in Equation (6) to the cases with an
angular scan range shorter than 2𝝅

In this subsection, we demonstrate that with a weighted
backprojection approach, the findings presented in
Equation (4) for parallel-beam acquisitions and Equa-
tion (6) for full-scan fan-beam acquisitions can be
extended to encompass any fan-beam data acquisi-
tion angular scan range and to the interior-tomography
case.

Suppose Γx⃗ is any scanning arc satisfying the Tuy
data sufficiency condition.42 We define a weighted back-
projection image B(x⃗) that can be computed from the
measured projection data in a fan-beam geometry with
a curved detector geometry as follows:

B(x⃗) = ∫
Γx⃗

0
dt

R𝜔(t, 𝛾) cos 𝛾

L(x⃗, t)
gm(t, 𝛾)|𝛾=𝛾0(t,x⃗), (7)

L(x⃗, t) =
√

(x − R cos t)2 + (y − R sin t)2, (8)

𝛾0(x⃗, t) = arctan
x⃗ ⋅ n̂⟂t

R − x⃗ ⋅ n̂t
. (9)

where n̂t = (cos t, sin t) and n̂⟂t = (sin t,− cos t) are two
mutually perpendicular unit vectors associated with
source locations. 𝛾0(x⃗, t) is the projection angle from the
source location to the reconstruction point x⃗ and L(x⃗, t)
is the distance from the image point x⃗ to the source
location (R cos t, R sin t) as shown in Figure 1. 𝜔(t, 𝛾)
is a normalized weighting factor for data redundancy.
For example, 𝜔 = 1

2
for redundant measurements and

1 for non-redundant measurements, but other smooth
weight factors are also good choices such as the Parker
weighting scheme, which was adopted for short-scan
and super-short-scan data reconstruction in this work.

To underscore the main innovation of this work, one
should compare the definition of the backprojection
image B(x⃗) as given by Equation (7) with the direct
projection approach articulated in Equations (5) and
(6) which represents the Gullberg scheme for full-scan
fan-beam acquisitions and Equation (4) that pertains to
the well-known parallel-beam acquisitions. The crucial
distinction is encapsulated by the weighting factor:

R𝜔(t, 𝛾) cos 𝛾

L(x⃗, t)
(10)

in our proposed backprojection method. This weight-
ing factor encompasses not just a data redundancy
factor 𝜔(t, 𝛾), which intuitively reduces to 1

2
for the full-

scan scenario,but also incorporates a geometrical factor
R cos 𝛾

L(x⃗,t)
=

1

2

2R cos 𝛾

L(x⃗,t)
. Since 2R cos 𝛾 represents the total

length of the chord along the direction from the source
to the backprojection point x⃗, as shown in Figure 1, the
weighting function is one half of the ratio of the total
chord length to the distance from the source to the
backprojection point.A shorter distance from the source
to the backprojection points corresponds to a higher
assigned weight. In conclusion, this factor ensures a del-
icately tailored weight is assigned to the backprojection
image point based on the distance L(x⃗, t) between the
backprojection point x⃗ and the source position.

When the reconstruction task is for an ROI, then the
above backprojection operation should be defined over
an angular range Γ = ∪x⃗∈ROIΓx⃗, that is, the union of the
angular range for each of the point inside the ROI. For
simplicity, the subscript x⃗ in Γx⃗ will be omitted in the
remainder of the paper whenever there is no confusion
in understanding.

Since only the projection data from those rays pass-
ing through the target ROI are used in the reconstruction
of the backprojection image B(x⃗), it is clear that the x-
ray beam can be collimated only to illuminate the target
ROI regardless of whether the projection data outside
the ROI are measured or not. This is to say that this
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950 DEEP INTERIOR

is an interior tomography data acquisition provided that
the target ROI only consists of the interior points of the
function support .

Using the innovative definition of the backprojection
image presented in Equation (7), we can derive the
following theorem, as elaborated in Appendix A:

Theorem. The backprojection image B(x⃗) defined in
Equation (7) is a blurred version of the original image
f (x⃗) in an image support  with a shift-invariant blurring
kernel K(x⃗) = 1||x⃗|| = 1√

x2+y2
, that is,

B(x⃗) = (f ⊛ K)(x⃗) = ∬
d2x⃗0

f (x⃗0)||x⃗0 − x⃗|| . (11)

provided that backprojection angular ranges in Equa-
tion (7) for a target ROI satisfy the Tuy data sufficiency
condition. While the content on the right-hand side of
the aforementioned equation happens to be the same as
the well-established parallel-beam results and the find-
ings by Gullberg for the full-scan fan-beam acquisition,
but this is not the key point. Instead, the key point is the
method to reconstruct B(x⃗) from the measured projec-
tion data. As it is explicitly shown in Equation (7), the
method of generating the backprojection image B(x⃗) in
our work is totally different from the direct backprojection
methods previously introduced in the literature.

2.4 Image reconstruction from the
weighted backprojection by deep learning

2.4.1 Image reconstruction from the
weighted backprojection image: Direct
reconstruction methods

When the weighted backprojection image B(x⃗) is com-
puted from non-truncated projection data, one can use
the convolution property to obtain the Fourier transform,
f̃ (𝜉), of the image function f (x⃗) as follows:

f̃ (𝜉) = ||𝜉||F[B](𝜉), (12)

where F[B](𝜉) is the Fourier transform of the back-
projection image B(x⃗), and 𝜉 = (𝜉x, 𝜉y) are the spatial
frequency vector. In principle, an inverse Fourier trans-
form can then be taken to reconstruct the image function
f (x⃗):

f (x⃗) = F−1[||𝜉||F[B](𝜉)](x⃗). (13)

However, it is challenging to numerically implement the
above inverse Fourier transform because the back-
projection image B(x⃗) is not compactly supported, or
equivalently, the Fourier transform F[B](𝜉) is not band-
limited. This is one of the key reasons that the above

B(x⃗)-based reconstruction algorithm was not exten-
sively studied in the past. It is even more problematic
when B(x⃗) is further truncated to a small ROI due to
data truncation.

Alternatively, one can also search for an approxima-
tion f̂ (x⃗) of the image function f (x⃗) within an ROI by solv-
ing the following regularized deconvolution optimization
problem:

f̂ (x⃗) =: min
U

[
1
2
||K ⊛ U − B||2

Ω
+ 𝜆R(U)

]
, (14)

where R(U) is the so-called regularizer or prior of the
function U(x⃗) ∈ Ω in the sense of Bayesian inference,Ω
is a functional space with proper norm defined, and 𝜆 is
a hyper-parameter to control the tradeoff between the
data fidelity encoded in Equation (11) and the regular-
izer R(U).However, identifying a suitable regularizer (i.e.,
R(U)) for interior tomographic reconstruction problems
remains a challenging task.

2.4.2 Proposed Deep-Interior
reconstruction strategy

With the recent rise of deep learning studies, we are
offered a new computational platform to relax the need
to handcraft regularizers in the above deconvolution
reconstruction process. When a large amount of well-
curated training data pairs {(Bi(x⃗), fi(x⃗))}S

i=1 are available,
where Bi(x⃗) is the blurred image of fi(x⃗) and the training
data set has a sample size of S, these training pairs can
be used to learn a feedforward convolutional neural net-
work, D, to directly map the blurred input image Bj(x⃗) to
the desired image function fj(x⃗) as its output. Namely,

fj(x⃗) = D(MBj(x⃗)), (15)

where MB(x⃗) is the cropped image that is consistent with
an interior tomography data acquisition with narrowly
collimated x-ray beams, and this beam collimation and
image cropping operation is modeled by the introduced
mask operator M, determined by the data acquisition.
Preliminary studies43 demonstrated this deep learn-
ing scheme is feasible when data are not truncated.
However, it is unclear how a trained deep neural net-
work D can yield accurate reconstruction as the beam
collimation decreases. Mathematically speaking, when
the beam collimation is reduced, the data available in
the data fidelity term in Equation (14) also decreases,
and the ill-posedness of the problem is more and
more severe.

In this work, the feedforward deep neural net-
work architecture D is trained by solving the follow-
ing optimization problem using the backpropagation
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DEEP INTERIOR 951

F IGURE 2 Workflow of the proposed Deep-Interior reconstruction pipeline. The second figure from the left shows the collimation in
sinogram for minimally needed data acquisition for an ROI. The third figure demonstrated the x-ray illumination of a patient to acquire a
𝜙 = 5 cm ROI represented by a yellow circle. The B(x⃗) image of the ROI region can then be accurately acquired through backprojection. The
trained network is then used to reconstruct the ROI. ROI, regions of interest.

algorithm:

D̂ = min
D

S∑
i=1

‖DMBi − fi‖1, (16)

Once the network is trained, the shift-invariant nature
of the blurring kernel dictates that the trained net-
work D can be readily applied to ROIs regardless of
their locations in a field of view. This means the ROI
to be reconstructed does not have to be centered on
the iso-center of the rotating gantry, as required in
Ref. [34].

3 MATERIALS AND METHOD

3.1 Workflow and deep neural network
architecture of the proposed Deep-Interior
reconstruction strategy

Figure 2 presents the proposed Deep-Interior recon-
struction workflow. The widely known U-Net44 was
used as the deep neural network architecture to imple-
ment the proposed reconstruction framework. Detailed
network specifications are presented in Figure 3. C
denotes the starting number of channels, and N relates
to the input image dimension. This work empirically
selects the number of channels as C = 64 and N = 4
for 𝜙 = 5.0 cm. As a result, the total trainable param-
eters are roughly 22 million. In principle, any modified
or more sophisticated neural network architecture can
replace the U-Net backbone used in this work. The
choice of U-Net demonstrated that the base network
was sufficient to learn a generalizable deconvolution
scheme for ROIs at an arbitrary location.

3.2 Curation of training, validation, and
testing data sets

A numerical training dataset is carefully curated to train
such a small FOV reconstruction network. The recon-

TABLE 1 The numerical dataset partition for training, validation,
and testing.

Training Validation Testing

Chest CT 1905 112 224

Abdominal CT 1792 175 560

Head CT 1712 128 283

structed ROI can be either a circular FOV or a square
FOV cropped from a slightly larger circular FOV. This
work mainly showed our Deep-Interior reconstruction
results using a circular FOV. The training dataset was
generated from clinical CT images by numerical simula-
tions without adding noise. The images covered various
anatomical structures, for example, head, chest, upper
abdomen, lower abdomen, and pelvis. Each slice was a
512 × 512 matrix and treated as an image with a 𝜙 =
40.0 cm diameter. The data partition is exhibited in the
following table.

A standard ray-driven forward projection procedure
was performed to acquire the numerical sinogram data
specific to each ROI. The parameters for the fan-beam
acquisition geometry are the same as that used in
Discovery 750 HD (GE Healthcare, WI, USA). The x-
ray illumination was collimated to a given ROI with
minimally needed view angles satisfying Tuy data suf-
ficiency. The unilluminated part of the detector was
set to zero. A weighted backprojection with Parker
weighting was performed to obtain a B(x⃗) image from
each sinogram data.These backprojection images were
normalized to [0, 1]. The reference image for each
ROI image was cropped from the ground truth image.
Ground truth was used for quantitative comparison
purposes.

The training data were prepared by selecting equally-
spaced ROIs with a stride of 2.5 cm (32 pixels), and
612 995 training data pairs were collected to train
the Deep-Interior network. Note also that the test data
were selected from completely different patient cases
not used for the network training. The details of data
used in training, validation, and testing are provided in
Table 1 and Table 2.
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952 DEEP INTERIOR

F IGURE 3 The figure exhibits the network architecture of U-Net employed in this work. Specifically, a four-pooling-layer U-Net consists of
four stages connected by 2 × 2 max-pooling layers (Pooling) in the first half and convolution-transpose layers (ConvTranspose) in the second
half. Each stage has two groups: a 3 × 3 convolution layer (Conv), a batch-normalization layer (Bnorm), and a ReLu layer. The number of
channels for each convolution layer is doubled after each pooling layer. A scale-by-scale concatenation strategy is leveraged after each
ConvTranspose layer to incorporate the higher-resolution structural information from previous stages. C denotes the starting number of
channels, and N relates to the input image dimension.

TABLE 2 The numerical dataset partition for training, validation,
and testing.

Training Validation Testing

Chest CT 1905 112 224

Abdominal CT 1792 175 560

Head CT 1712 128 283

3.3 Network training specifics

The network training was performed on a worksta-
tion with a graphic processing unit (GPU) (Nvidia GTX
1080Ti). The network was trained using an Adam opti-
mizer (𝛽 = 0.5) with a mean absolute difference loss
function.No additional regularizer was added to the loss
function. For numerical data training, the initial learning
rate was 1 × 10−4 and gradually decreased every 20
epochs with a decay factor of 0.5. The maximum train-
ing epochs were set to 100, resulting in the minimum
learning rate of 6.25 × 10−6. The moving average of the
validation loss was monitored to avoid overfitting. The
training took one day. During the testing phase, it took
0.01 second to reconstruct one ROI.

3.4 Generalizability test: From trained
Deep-Interior model using numerical
simulation data to experimental dataset

The generalizability of the trained network was inves-
tigated by testing its performance on the external
experimental dataset. Specifically, the deep neural net-
work D̂ trained by the numerical simulation data was
directly applied, that is, without any fine-tuning process,
to reconstruct images using the weighted backprojec-
tion images B(x⃗) reconstructed from the experimental
sinogram data.

With HIPAA compliance and IRB approval, raw sino-
gram datasets of 77 human subjects (376 slices)
scanned with a coronary CT angiography protocol were
retrospectively retrieved.The step-and-shoot short-scan
acquisition mode acquired the projection data on a 64-
slice CT scanner (Discovery CT 750HD,GE Healthcare)
with a 100 or 120 kV tube potential and milliampare
ranging from 270 to 800 mA.A number of 376 test image
slices and the corresponding sinogram projection data
were collected for this work.

To generate reference images for performance quan-
tification, the conventional non-truncated short-scan
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DEEP INTERIOR 953

FBP reconstruction was performed to reconstruct
image slices with a FOV of 𝜙 = 40 cm without trun-
cation, image size of 512 × 512, slice thickness of
3.75 mm. It is worth noting that due to the data
acquisition and reconstruction process, FBP as the
reference image is a slightly blurred version of the
ground truth image in numerical studies. Thus resid-
ual edges are expected in the difference image when
comparing the trained Deep-Interior to the reference
image.

3.5 Quantitative quality evaluation
metrics

Reconstruction accuracy is quantified using two stan-
dard metrics: relative root mean square error (rRMSE)
and structural similarity index metric (SSIM), defined as
follows:

rRMSE(x⃗, x⃗0) =
||x⃗ − x⃗0||2||x⃗0||2 × 100%, (17)

where x⃗ denotes the vector form of the reconstructed
image, x⃗0 denotes the vector form of the ground truth or
reference image.

SSIM(x, x0) =
(2𝜇x𝜇x0

+ a1)(2𝜎x,x0
+ a2)

(𝜇2
x + 𝜇

2
x0
+ a1)(𝜎2

x + 𝜎
2
x0
+ a2)

, (18)

where 𝜇x denotes the mean value of image x, 𝜎x
denotes the variance of x, and similar properties are
defined for the reference image x0. 𝜎x,x0

denotes the
cross-covariance of x and x0. a1 = 1 × 10−6 and a2 =
3 × 10−6 are two constants chosen based on the dynan-
mic range of CT images [0, 0.1] mm−1 and are
used to stabilize the division with a small denomi-
nator. Notice that SSIM was calculated locally for a
given pixel and should be denoted as SSIM(x, x0, l)
at location l. An overall SSIM value was calcu-
lated by averaging over all locations of a recon-
structed ROI image to represent the reconstruction
accuracy.

Note that these metrics quantified all reconstructed
images by excluding the area outside the circular FOV.

4 RESULTS

In this section, results are presented to demonstrate
the reconstruction accuracy of the weighted backpro-
jection image B(x⃗) using the reconstruction formula
Equation (7). Followed by that are the results demon-

strating the reconstruction accuracy of the proposed
Deep-Interior method.

4.1 Reconstruction accuracy of the
weighted backprojection images for
short-scan and super-short-scan
acquisitions

To validate the reconstruction formula shown in Equa-
tion (7), reference images used in numerical simulations
to generate training data were numerically blurred by
the kernel K(x⃗) as shown in Equation (11). The blur-
ring was achieved by forward projection followed by an
unweighted backprojection in parallel-beam geometry.
The difference images between the reconstructed B(x⃗)
using Equation (7) and the blurred version using Equa-
tion (11) were generated. The corresponding rRMSEs
were calculated.

As shown in Figure 4, we have studied both the
conventional direct backprojection and the proposed
weighted backprojection, as described in Equation (7).
Backprojection images have been reconstructed for
full-scan (Γ = [0, 2𝜋)), short-scan (Γ = [0,𝜋 + 𝛾m)), and
super-short-scan(Γ = [0,𝜋)) data, and subsequently
compared with reference images. 𝛾m denotes the fan
angle of the CT scanner (Discovery CT 750HD, GE
Healthcare), which is about 60◦. The error images and
the reconstruction errors, when evaluated using rRMSE
and excluding areas outside the phantom, reveal mini-
mal discrepancies for the proposed method across all
data acquisition scenarios. In contrast, the direct back-
projection method is only suited for the full-scan case.

4.2 Deep-Interior: Shift-invariant
reconstruction performance at arbitrary
ROI locations and arbitrary anatomical
sites

A trained Deep-Interior neural network model was
applied to the test data sets with small ROIs with a diam-
eter of 𝜙 = 5.0 cm. These ROIs are located at arbitrary
locations and three different anatomical sites (chest,
abdomen, and pelvis). The Deep-Interior neural network
model does not see these test data sets in training.
For the numerical test dataset, the trained Deep-Interior
deep neural network can reconstruct all small ROIs
with high reconstruction accuracy in terms of rRMSE
(2.4 ± 1.1%) and similarity indices SSIM (0.985 ± 0.018).
Figure 5 demonstrates three reconstructed images of
different anatomical structures: (a) chest, (b) abdomen,
and (c) pelvis. The results of five ROIs marked by cir-
cles are displayed correspondingly on the right side of
the image. Specifically, the B(x⃗) image, the FBP image
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954 DEEP INTERIOR

F IGURE 4 Comparison between the conventional direct backprojection and our proposed weighted backprojection method is conducted
using a numerical abdominal phantom. The conventional direct backprojection is illustrated in the top row, while the proposed weighted
backprojection approach is exhibited in the second row. Evaluations span across various data acquisition scenarios: (1) Full scan (Γ = [0, 2𝜋)),
(2) Short-scan (Γ = [0,𝜋 + 𝛾m)), and 3. Super-short-scan (Γ = [0,𝜋)) data. 𝛾m ≈ 60◦ denotes the fan angle of the CT scanner. Note that, for the
super-short-scan data, the segment illustrating missing data in the reconstructed image is marked above the dashed line. All analyses, both
visual and quantitative, are centered on the region below the dashed line, encapsulating areas with sufficient data. Note that the gray color
represents a zero difference while bright and dark colors represent large differences.

reconstructed by applying the standard FBP algorithm
to the truncated data (Truncated FBP), the recon-
structed ROIs from the B(x⃗) image using the trained
Deep-Interior network (Deep-Interior), the ground truth
image (Ref), and their difference images (Diff) are
shown from left to right. rRMSE and SSIM results cor-
responded to the Deep-Interior image when compared
to the ground truth image. The reconstructed ROIs
cover a variety of low-contrast, high-contrast, and uni-
form anatomical structures such as contrast-enhanced
heart ventricles, spines, hepatic veins, spleen, colons,
bone, bone spongiosa, and so on. The selected posi-
tions also range from the patient’s center to peripheral
bodies. We also note that no selected ROI loca-

tions in these images were included in the training
process.

4.3 Deep-Interior: Generalizability test
of the trained network model to
experimental human subject data

To assess whether the Deep-Interior reconstruction
model truly learned to perform the desired two-
dimensional deconvolution from the reconstructed B(x⃗)
without dependence on the training data set, which was
numerically generated, we directly applied the trained
Deep-Interior model to the reconstructed B(x⃗) from the
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DEEP INTERIOR 955

F IGURE 5 Reconstruction accuracy assessment of the trained Deep-Interior network model. The model was applied to numerically
generated test data (detailed in Section 3.2) for three different anatomical sites: (a) a chest slice, (b) an upper abdomen (liver) slice, and (c) a
lower abdomen (pelvis) slice. For each site, five ROIs were designated to quantify the reconstruction accuracy. Display windows for the
difference images are set at W/L=200/0 HU. The CT image display windows are: (a) chest W/L=800/50 HU, (b) abdomen W/L=600/25 HU, and
(c) pelvis W/L=600/50 HU.

sinogram projection data of the CT scanner. Namely,
the acquired full FOV sinogram projection data is retro-
spectively collimated to conformally cover the selected
ROIs as shown in Figure 6 to simulate actual interior
tomographic data acquisitions.Using the truncated sino-

gram for each marked ROI, the weighted backprojection
images B(x⃗) were reconstructed using Equation (7).
These reconstructed backprojection images are fed into
the trained Deep-Interior neural network model to recon-
struct the ultimate ROIs. The reconstruction accuracy is
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956 DEEP INTERIOR

F IGURE 6 Deep-Interior reconstruction using experimental projection data (FOV size: 𝜙 = 5.0 cm). (a) Chest and (b) Abdomen. Display
windows: Chest W/L=800/50 HU; Abdomen W/L=600/20 HU; WL=300/0 HU for all difference images.

evaluated using the SSIM metric. SSIM was reported
at 0.940 ± 0.025 across the entire human subject test
dataset. The results showed remarkable reconstruc-
tion accuracy with 0.93 better SSIM than the reference
image reconstructed from full FOV data using FBP for
the same ROIs.

4.4 Deep-Interior: To reconstruct
arbitrary size ROIs using a single trained
deep neural network model

The shift-invariant reconstruction performance of the
trained Deep-Interior network naturally enables ROI
reconstruction of arbitrary sizes. As a proof of concept,
reconstructed circular ROIs of diameter 𝜙 = 5 cm at dif-
ferent positions were assembled to form a larger circular
ROI without additional training of a different network.
One of the straightforward stitching schemes to form a
larger ROI, for example,𝜙 = 10 cm, is shown in Figure 7:
several small ROIs were stitched and then cropped

to a circular FOV for visualization. Figure 7 further
shows an example of reconstructing multiple ROIs of
different sizes using experimental projection data retro-
spectively collimated to the corresponding assembly of
small ROIs. Their quantitative evaluation of reconstruc-
tion accuracy compared to non-truncated FBP (Ref) is
exhibited.

4.5 Deep-Interior: Reconstructing
cone-Beam data by projecting 3D slices
onto 2D slices

In contemporary medical imaging, for a range of
practical applications, one can employ the Feldkamp
approximation45 to extend the use of our Deep-interior
reconstruction method to cone-beam CT acquisitions
when the cone angle is relatively small.This extension is
achieved by incorporating an additional weighting step
into the Deep-Interior setup. In order to enable volume-
of-interest (VOI) reconstruction for cone-beam CT, we
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DEEP INTERIOR 957

F IGURE 7 An example of reconstructing ROIs of different sizes for a single image using the trained Deep-Interior network for circular FOV
with diameter 𝜙 = 5 cm. The exemplary stitching scheme is shown for a larger ROI with diameter 𝜙 = 10 cm. Four sizes were shown with
diameters of 5, 10, 15, and 20 cm. SSIM and rRMSE comparing Deep-Interior to non-truncated FBP are shown as well. The window levels are
W/L=800/50 HU for CT images. FOV, field of view; rRMSE, relative root mean square error; ROI, regions of interest; SSIM, structural similarity
index metric.

project data from various rows of the multi-row detector
onto the scanning plane, utilizing a cosine factor. For a
cylindrical detector, this cosine factor is expressed as:

cos 𝜏 =
SDD√

SDD2 + v2
(19)

In this equation, SDD signifies the distance from the
source to the detector, and v represents the height
of the detector row. By leveraging this weighting fac-

tor, the projection data obtained can be backprojected
into the feature space B(x⃗), row-by-row, mirroring the
FDK algorithm’s approach.Following this, the previously
trained deconvolution network is applied to each slice
of B(x⃗). Benefiting from batch processing, this approach
facilitates efficient 3D image reconstruction, addressing
concerns related to processing time. Figure 8 presents
the deep-interior for the experimental testing cone-beam
CT cases described in Section 3.4 over three different
representative VOIs.
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958 DEEP INTERIOR

F IGURE 8 Deep-Interior reconstructs cylindrical VOIs of
dimensions 64 × 64 × 32 pixels, equivalent to a spatial size of
5 × 5 × 5 cm3, using experimental cone-beam data. The illustrations
showcase three VOIs in central axial, coronal, and sagittal slices.
Reconstructions include the weighted backprojection image B(x⃗),
Deep-Interior’s results, and reference FBP images. The
reconstruction differences between Deep-Interior and the reference
images are quantified using rRMSE (%) and SSIM metrics. The
window levels are W/L=800/25 HU for CT images and 300/0 HU for
difference images. FBP, filtered backprojection; rRMSE, relative root
mean square error; SSIM, structural similarity index metric; VOI,
volume-of-interest.

5 DISCUSSION

This paper developed and validated a new image recon-
struction framework to address the interior tomographic
reconstruction problem. In this framework, the pro-
posed image reconstruction formula (Equation (7)) was
used to reconstruct the weighted backprojection image
B(x⃗) from the measured fan-beam projection data. It is
remarkable to show that this backprojection image is
the blurred version of the actual image f (x⃗) by a shift-
invariant kernel K(x⃗) = 1||x⃗|| and this is true for arbitrary

ROIs using the data acquired in the corresponding view
angle range satisfying the Tuy data sufficiency condi-
tion. The reconstructed backprojection images are then
de-convolved to reconstruct the desired interior tomo-
graphic images using a single trained deep neural work
model. The same trained model from numerical simula-
tions was also directly applied to experimental human
subject data without fine-tuning to show remarkable
reconstruction accuracy. This indicates that the trained
model indeed learned to perform the desired deconvo-
lutions to unwrap the effect of the shift-invariant blurring
kernel K(x⃗). If one wants to reconstruct large-size ROIs,
the reconstructed small ROIs can be stitched together
without using new neural network models. Compared
to state-of -the-art method, Deep-Interior is unique to
reconstructing small ROIs at arbitrary location and with
arbitrary sizes. However, we acknowledge that it has not
been equipped with low-dose,35 undersampling34 and
exterior estimation36 capabilities which are available
in literature.

Several potential limitations in this work should be
addressed in future works: (1) Systematic investiga-
tions need to be performed to study the breakdown
limit of the ROI sizes. When the beam is collimated
from smaller and smaller ROI sizes, the ill-posedness
of the deconvolution problem becomes more severe.
It would be interesting to see how much deep learn-
ing strategy can be further leveraged to address this
more challenging deconvolution problem. (2) System-
atic investigations are needed to study the performance
dependence of Deep-Interior on the noise configuration.
The Deep-Interior network has not yet been trained to
reduce noise. Noise will remain at low-dose settings. (3)
Since there are no differentiation operations involved
in the formation of the weighted backprojection image
B(x⃗), one can expect that this new strategy may tolerate
sparse view angle sampling better than other methods
involving differentiation operations between view angles.
This warrants another systematic investigation to pin-
point how the reconstruction performance depends on
the view angle sampling conditions. (4) As shown in
the paper, it is the specific definition of the weighted
backprojection image B(x⃗) shown in Equation (7) that
enables the reconstructed image B(x⃗) to be a blurred
image of the corresponding image function f (x⃗) with a
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DEEP INTERIOR 959

shift-invariant blurring kernel for any ROI sizes and the
corresponding scan angular ranges satisfying the Tuy
data sufficiency condition.

6 CONCLUSION

A new interior tomographic reconstruction strategy
was developed and validated by a weighted back-
projection and deep learning steps referred to as
Deep-Interior. This new strategy enables accurate
image reconstructions for small ROIs with diameters
larger than 5.0 cm with high quantitative reconstruction
accuracy.
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APPENDIX A: PROOF OF THE CENTRAL
THEOREM
In this appendix, we present a proof of the central the-
orem as shown in Equation (11) with B(x⃗) defined in
Equation (7).

It is instructive to start the proof by writing the back-
projection image B(x⃗) in terms of parameterization (𝜌, 𝜃)

as that in a parallel-beam geometry.

B(x⃗) = ∫
𝜋

0
d𝜃P(𝜌, 𝜃)|𝜌=x⃗⋅n̂,

= ∫
𝜋

0
d𝜃 ∫

+∞

−∞

d𝜌P(𝜌, 𝜃)𝛿(𝜌 − x⃗ ⋅ n̂). (A1)

where n̂ = (cos 𝜃, sin 𝜃) is a unit vector and 𝛿(⋅) is the
Dirac δ–function in the sense of distributions. Using the
line integral definition shown in Equation (1) to replace
P(𝜌, 𝜃) in above equation, one obtains,

B(x, y) = ∬
dx′dy′f (x′, y′)

I(x⃗
′
, x⃗)||x⃗′ − x⃗|| , (A2)

where ||x⃗′ − x⃗|| is the Euclidean distance between two
points x⃗ and x⃗

′
and the function I(x⃗

′
, x⃗) is defined as

follows:

I(x⃗
′
, x⃗) = ∫

𝜋

0
d𝜃 ∫

∞

−∞

d𝜌||x⃗′ − x⃗||𝛿(𝜌 − x⃗ ⋅ n̂)𝛿(𝜌 − x⃗
′
⋅ n̂)

= ∫
𝜋

0
d𝜃 ∫

∞

−∞

d𝜌||x⃗′ − x⃗||𝛿[(x⃗ − x⃗
′
) ⋅ n̂]𝛿(𝜌 − x⃗ ⋅ n̂)

= ∫
𝜋

0
d𝜃 ∫

∞

−∞

d𝜌𝛿

[
(x⃗ − x⃗

′
)||x⃗′ − x⃗|| ⋅ n̂

]
𝛿(𝜌 − x⃗ ⋅ n̂)

= ∫
𝜋

0
d𝜃 ∫

∞

−∞

d𝜌𝛿[cos(𝜃 − 𝜃0(x⃗, x⃗
′
))]𝛿(𝜌 − x⃗ ⋅ n̂),

(A3)

where the angle 𝜃0(x⃗, x⃗
′
) is defined as follows,

tan 𝜃0(x⃗, x⃗
′
) =

y − y
′

x − x′
(A4)

In next step,we change variable from (𝜌, 𝜃) back to the
fan-beam parameterization (t, 𝛾) with a curved detector
in Equation (A1) to obtain the following result:

B(x⃗) = ∫
Γ

0
dt ∫

𝛾m
2

−
𝛾m
2

d𝛾R cos 𝛾𝜔(t, 𝛾)gm(t, 𝛾)|𝜌=x⃗⋅n̂. (A5)

Here the factor R cos 𝛾 is the Jacobian factor. To
account for the potential data redundancy in fan-beam
acquisitions with an angular range of Γ, a normalized
weighting factor 𝜔(t, 𝛾) is also introduced since this data
redundancy is not present in the corresponding parallel-
beam parameterization in terms of (𝜌, 𝜃) in Equa-
tion (A1). Using the transform shown in Equation (2)
for the constraint 𝜌 = x⃗ ⋅ n̂, we obtain the following
result:

B(x⃗) = ∫
Γ

0
dt ∫

𝛾m
2

−
𝛾m
2

d𝛾R cos 𝛾𝜔(t, 𝛾)gm(t, 𝛾)𝛿(𝜌 − x⃗ ⋅ n̂),
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F IGURE A1 The geometry used in the proof of the central
theorem.

= ∫
Γ

0
dt

R cos 𝛾𝜔(t, 𝛾)

L(x⃗, t)
gm(t, 𝛾)|𝛾=𝛾0(x⃗,t), (A6)

where we used the following identity:

𝛿(𝜌 − x⃗ ⋅ n̂) = 𝛿[L(x⃗, t) sin(𝛾 − 𝛾0(x⃗, t))]. (A7)

Equation (A6) is nothing but Equation (7) in the
main text.

Similarly, the factor I(x⃗
′
, x⃗) defined in Equation (A3)

can be calculated in fan-beam geometry with a curved
detector as follows.

I(x⃗
′
, x⃗) = ∫

𝜋

0
d𝜃 ∫

∞

−∞

d𝜌𝛿[cos(𝜃 − 𝜃0(x⃗, x⃗
′
))]𝛿(𝜌 − x⃗ ⋅ n̂),

= ∫
Γ

0
dt ∫

𝛾m
2

−
𝛾m
2

d𝛾R cos 𝛾𝜔(t, 𝛾)𝛿
[
cos

(
t +

𝜋

2
+ 𝛾 − 𝜃0(x⃗, x⃗

′
)
)]

× 𝛿[L(x⃗, t) sin(𝛾 − 𝛾0(x⃗, t))]

= R∫
Γ

0
dt
𝜔(t, 𝛾)

L(x⃗, t)
cos 𝛾0(x⃗, t)𝛿

[
cos

(
t + 𝛾0(x⃗, t) +

𝜋

2
− 𝜃0(x⃗, x⃗

′
)
)]

= ∫
Γ

0
dt

R cos 𝛾0(x⃗, t)𝜔(t, 𝛾)

L(x⃗, t)
𝛿[g(t)], (A8)

where function g(t) is defined as follows:

g(t) = sin[t + 𝛾0(x⃗, t) − 𝜃0(x⃗, x⃗
′
)]. (A9)

To gain insight into the solution of g(t) = 0, with the
help of Figure A1, we find the following facts are ben-
eficial: Given two points x⃗ = (x, y) and x⃗

′
= (x

′
, y

′
) in

the scanning field of view. The straight line passing

through these two points intersects the scanning tra-
jectory at two source locations S1 = (R cos t1, R sin t1)
and S2 = (R cos t2, R sin t2). If we denote the azimuthal
angle of the vector Δx⃗ = x⃗

′
− x⃗ as 𝜃0(x⃗, x⃗

′
) and 𝛾0(x⃗, t) =

arctan x sin t−y cos t

R−x cos t−y sin t
the angle from iso-ray to the image

point x⃗ when it is viewed from the source location
(R cos t, R sin t), then we have the following inequality
t + 𝛾0(x⃗, t) ≥ 𝜃0(x⃗, x⃗

′
) with equality taken at t = t1 or t =

t2. As a result, the final integral in Equation (A8) can be
readily evaluated at these two source locations t = t1 or
t = t2 to obtain the following results:

I(x⃗
′
, x⃗) = | R cos 𝛾0(x⃗, t1)𝜔(𝛾0, t1)

L(x⃗, t1)
(

1 + 𝜕

𝜕t
𝛾0(x⃗, t)|t=t1

)
+

R cos 𝛾0(x⃗, t2)𝜔(𝛾0, t2)

L(x⃗, t2)
(

1 + 𝜕

𝜕t
𝛾0(x⃗, t)|t=t2

)|. (A10)

To proceed to the final result, we will need to use the
following crucial identity (Appendix B):

L(x⃗, t)
(

1 +
𝜕

𝜕t
𝛾0(x⃗, t)

)
≡ R cos 𝛾0(x⃗, t). (A11)

As a result of the above identity,Equation (A10) is readily
evaluated to be

I(x⃗
′
, x⃗) = 𝜔(𝛾0, t1) + 𝜔(𝛾0, t2) ≡ 1 (A12)

Substituting this result back in Equation (A2), we
conclude

B(x⃗) = ∬
dx′dy′

f (x⃗
′
)||x⃗′ − x⃗|| = f (x⃗)⊛

1||x⃗|| . (A13)

This completes the proof of the main theorem.

APPENDIX B: PROOF OF THE I DENT ITY
I N E QUAT I O N (A11 )
In this appendix, we prove the identity shown in
Equation (A11). Using the definition of 𝛾0(x⃗, t), some
straightforward algebraic calculations yield:

1 +
𝜕

𝜕t
𝛾0(x⃗, t) =1 +

R(x cos t + y sin t) − x2 − y2

L2(x⃗, t)
,

=1 +
Rx⃗ ⋅ n̂(t) − ||x⃗||2

L2(x⃗, t)
,

=
L2(x⃗, t) − ||x⃗||2 + Rx⃗ ⋅ n̂(t)

L2(x⃗, t)
.

(B1)

Here n̂(t) = (cos t, sin t) is a unit vector and ||x⃗|| is the
Euclidean norm of the vector x⃗.By drawing a perpendic-
ular line from point x⃗ to the iso-ray, one can immediately
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see the following identity using the Pythagoras theorem:

L2(x⃗, t) − [R − x⃗ ⋅ n̂(t)]2 = ||x⃗||2 − [x⃗ ⋅ n̂(t)]2, (B2)

that is, L2(x⃗, t) − ||x⃗||2 = [R − x⃗ ⋅ n̂(t)]2 − [x⃗ ⋅ n̂(t)]2. After
we substitute this identity into Equation (B1), we obtain
the following equation:

1 +
𝜕

𝜕t
𝛾0(x⃗, t)

=

(
R − x⃗ ⋅ n̂(t)

L(x⃗, t)

)2

+
R − x⃗ ⋅ n̂(t)

L(x⃗, t)
⋅

R − [R − x⃗ ⋅ n̂(t)]

L(x⃗, t)

= cos2 𝛾0(x⃗, t) + cos 𝛾0(x⃗, t)
[

R
L(x⃗, t)

− cos 𝛾0(x⃗, t)
]
,

=
R cos 𝛾0(x⃗, t)

L(x⃗, t)
. (B3)

This completes the proof of the identity shown in
Equation (A11).

APPENDIX C: BACKPROJECTION I MAGE
USING UN-WEIGHTED
BACKPROJECTION AT 𝚪 = 2𝝅
In this appendix, we show that a direct backprojec-
tion of fan-beam projection data without the proposed
weighting scheme in Equation (7) can also yield a
blurred backprojection image, that is, f (x⃗)⊛ 1||x⃗|| , pro-

vided that the scan angular range Γ = 2𝜋. By definition,
the backprojection image B2𝜋(x⃗) is generated as follows:

B2𝜋(x⃗) =
1
2 ∫

2𝜋

0
dtgm(𝛾)|𝛾=𝛾0(x⃗,t), (C1)

=
1
2 ∫

2𝜋

0
dtgm(t, 𝛾)𝛿[𝛾 − 𝛾0(x⃗, t)],

where the factor of 1

2
is introduced to account for

the two-fold data redundancy in full scan acquisitions.
Note that the line integral value gm(t, 𝛾) is measured
along the straight line 𝓁 parameterized by two param-
eters (t, 𝛾) which can also be parameterized by (𝜌, 𝜃)
as follows:

gm(t, 𝛾) = ∬
dxdyf (x, y)𝛿(x cos 𝜃 + y sin 𝜃 − 𝜌), (C2)

= ∬
dxdyf (x, y)𝛿[L(x⃗, t)sin(𝛾 − 𝛾0(x⃗, t))],

where Equation (A7) is used in the second line. Sub-
stituting the above equation back to Equation (C1), one
gets

B2𝜋(x⃗) =
1
2 ∬

dx
′
dy

′
f (x

′
, y

′
)∫

2𝜋

0
dt (C3)

× 𝛿[L(x⃗
′
, t)sin(𝛾 − 𝛾0(x⃗

′
, t))]𝛿[𝛾 − 𝛾0(x⃗, t)],

=
1
2 ∬

dx
′
dy

′
f (x

′
, y

′
)∫

2𝜋

0
dt

× 𝛿[L(x⃗
′
, t) sin(𝛾0(x⃗, t) − 𝛾0(x⃗

′
, t))],

=
1
2 ∬

dx
′
dy

′
f (x

′
, y

′
)

×
⎡⎢⎢⎣ 1

L(x⃗′ , t1)
1| 𝜕

𝜕t
h(x⃗, x⃗′ ; t1)| + 1

L(x⃗′ , t1)
1| 𝜕

𝜕t
h(x⃗, x⃗′ ; t2)|

⎤⎥⎥⎦,
where t1,2 are the two solutions of equation h(x⃗, x⃗

′
; t) =

sin[𝛾0(x⃗, t) − 𝛾0(x⃗
′
, t)] = 0. This occurs at 𝛾0(x⃗, t) =

𝛾0(x⃗
′
, t). Geometrically, this means that the two solu-

tions are determined by the two intersections of the
straight line connecting two points x⃗ and x⃗

′
at the source

trajectory. As a result, we have the following results:

𝜕

𝜕t
h(x⃗, x⃗

′
; t) (C4)

= cos[𝛾0(x⃗, t) − 𝛾0(x⃗
′
, t)]

[
𝜕

𝜕t
𝛾0(x⃗, t) −

𝜕

𝜕t
𝛾0(x⃗

′
, t)

]
,

=
𝜕

𝜕t
𝛾0(x⃗, t) −

𝜕

𝜕t
𝛾0(x⃗

′
, t),

=
R cos 𝛾0(x⃗, t)

L(x⃗, t)
−

R cos 𝛾0(x⃗
′
, t)

L(x⃗′ , t)
.

The identity Equation (B3) was used in the last equality.
In other words, we have the following results:

L(x⃗, t)| 𝜕
𝜕t

h(x⃗, x⃗
′
; t)| = R cos 𝛾0(x⃗, t)

|L(x⃗
′
, t) − L(x⃗, t)|
L(x⃗′ , t)

,

(C5)

= R cos 𝛾0(x⃗, t)
||x⃗ − x⃗

′ ||
L(x⃗′ , t)

,

where we have used the following fact:

|L(x⃗
′
, t) − L(x⃗, t)| = ||x⃗ − x⃗

′ ||. (C6)

In other words, Equation (C5) can now be written as

1
L(x⃗′ , t)

1| 𝜕
𝜕t

h(x⃗, x⃗′ ; t)| = L(x⃗
′
, t)

R cos 𝛾0(x⃗, t)||x⃗ − x⃗′ || . (C7)

Substituting the above result in Equation (C3),we obtain

B2𝜋(x⃗) =
1
2 ∬

dx
′
dy

′
f (x

′
, y

′
)

1||x⃗ − x⃗′ || (C8)
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×

[
L(x⃗

′
, t1)

R cos 𝛾0(x⃗, t1)
+

L(x⃗
′
, t2)

R cos 𝛾0(x⃗, t2)

]
.

Note also that

R cos 𝛾0(x⃗, t2) = R cos 𝛾0(x⃗, t1), (C9)

=
1
2

[L(x⃗
′
, t1) + L(x⃗

′
, t2)],

at two source locations t1,2 determined by h(x⃗, x⃗
′
; t) = 0

as discussed before. We come to a the following result:

L(x⃗
′
, t1)

R cos 𝛾0(x⃗, t1)
+

L(x⃗
′
, t2)

R cos 𝛾0(x⃗, t2)
, (C10)

=
L(x⃗

′
, t1) + L(x⃗

′
, t2)

R cos 𝛾0(x⃗, t1)
,

≡ 2.

Note that this remarkable geometric identity requires
contributions from two source locations, t1 and t2.Conse-

quently, it is applicable only in the case of full-scan data
acquisitions. Using this identity, we have reproduced the
following elegant result,

B2𝜋(x⃗) = ∬
dx

′
dy

′
f (x

′
, y

′
)

1||x⃗ − x⃗′ || = f (x⃗)⊛
1||x⃗|| ,
(C11)

as first obtained by Gullberg41 back in 1979. However,
as shown in this appendix, the above result relies on the
miraculous identity shown in Equation (C10), which is
only valid for the full scan case. It is also worth noting
that this identity was also used by Dennerlein et al. in
Ref. [46] to derive a FBP reconstruction algorithm that
does not include a distance-dependent weighting factor
in the backprojection step. In contrast, when the back-
projection image is defined as the one in Equation (A6)
in Appendix A, that is, Equation (7) in the main text, then
the above result is valid for any angular range satisfying
the Tuy data sufficiency condition.
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