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Deep Learning in CT Reconstruction:
Bringing the Measured Data to Tasks

Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han,
and Jong Chul Ye

Introduction

The positive impact that diagnostic computed tomography (CT) imaging has made
upon the diagnosis and treatment of symplomalic patients over the past lew decades
is unprecedented. However, despite the remarkable contribution of CT to modern
healtheare, the 1ssue of the small theoretical cancer nisk associated with the use of
ionizing radiation in CT has recently become a public concern,

To address the public concerns, many sirategic discussion sessions have been orga-
mized by the National Institutes of Health (NIH) and the Amencan Association of
Physicists in Medicine {AAPM) to map out the scientific steps needed to accomplish
the goal of sub-mSvy CT imaging. A consensus report was published [1] (o guide the
development of low-dose CT imaging technologies. The research and development
efforts from academic, industrial, and clinical societies in the past decade have resulted
in the development and implementation of a vanety of radiation-dose-reduction strate-
gies for CT exams.

To lower the radibion dose in CT exams, advanced CT hardware technologies have
been developed and incorporated into the current clinical CT systems, including but
not limited 1o, newer generations of CT detectors with improved detection guantum
efficiency, beam-shaping filters and dynamic z-axis collimators that Iimit the dose
at the periphery of the patient and edge of the scan range, automatic exposure
control with the Hexibility to modulate tube potential and tube current, and photon-
counting CT.

In addition to hardware technology developments, soltware lechnologics have also
played a major role in this joint effort of radiation dose reduction. Many advanced
image-processing technigues working in the sinogram projection-data domain or in
the reconstructed-image domain, or in both domains jointly in fully statistical iterative
reconstruction (IR) format have been developed and some of these methods have been
incorporated into commercial products for routine clinical uses. In the past decade or
so, such newly developed low-dose reconstruction or processing software has been
rigorously evaluated with large patient cohorts, 1L has been found that, after a decade-
long effort to reduce CT radiation dose with IR software techniques, the radiation dose
can be reduced by up to 25 percent with statistical IR techniques withowt sacrificing
clinical diagnostic quality [2, 3].
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This stamws quo of the radiation dose reduction factor using statistical TR leaves
plenty of room for the development of new techmigues to further reduce radistion
dose in clinical CT exams, particularly, new techniques that are sufficiently flexible to
leverage the intrinsic advantages of analviical reconstruction methods, such as filtered
back projection or differentiated back projection filtration-based methods [4] and the
statistical learning principles that have been extensively investigated in statistical IR
methods. In this regard, the recent advances in deep learning provide us with an ideal
computational framework that can be developed to directly reconstruct CT images
from sinogram data, or can be combined with analytical reconstruction methods 1o
address the challenges encountered in their application, or can be combined with
statistical IR to address reconstruction accuracy and the generalizabiality concerns
associated with deep-learning methods,

The foundational physics principles of CT image reconstruction problems will be
presented in Section 6.2, Adter that, deep learning in CT image reconstruction will be
described, with examples on how to perform reconstruction directly from sinogram
o image in Section 6.3, how 10 combine deep learning with analytical reconstruction
methods in Section 6.4, and how to combine deep learning with statistical IR methods
in Section 6.5,

CT Imaging Physics and Reconstruction-Problem Formulations

In this section, by following the experimental image-formation processes in CT,
image-reconstruction problems are formulated from an imaging-physics standpoint in
order to make the scientific foundations of each reconstruction framework transparent.
Particularly, the assumptions implicitly or explicitly used in the past will be made
transparent in our formulations. This review of problem formulation also aims to put
the rapid rising of deep-learning methods into a proper scientific context and to lind a
niche for deep-learning methods in the big picture of radiation dose reduction in CT,
We also hope that this section will inspire cross-pollination between analytical image
reconstruction, statistical IR, and data-driven deep-learning-based reconstruction
strategies, with the ultimate objective of developing some innovative reconstruction
sirategies with a high clinical impact,

CT Image Reconstruction Problem Formulation: A Deterministic Approach

The physics of X-ray attenuation by an image object 1s captured by the empirical Beer-
Lambert law, which characterizes the mean photon number before and after the X-rav
beam interacts with the image object. The interactions of the X-ray photons and the
image object are characterized by the so-called linear attenuation coefficient, p(x, ),
at a given spatial location and X-ray energy . The mean photon number recorded at
the ith detector element is given by the Beer-Lambert law as follows:

Tmarx
N = N,-nf deQ(e)exp (—f di’lufE,E}). (6.1)
0 i
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Therefore, when the repetition of experimental data acquisition is prohibited, as in
climcal CT acquisiions, CT image reconstruction must be formulated as a statistical
learning problem: to statistically infer the object information u(x, ), i.e., the statisti-
cal parameters given a set of measured data (N Na, o 0 Ny

Since the measurements at different detector elements can be considered to be
statistically independent, the joint probability of a measured dataset is then given by

M M
PUNL N . Nag)lp@) =[] PVipGin = [ ]

il i=1

N e

]
N e

where the effective energy dependence £ in p(x, £) has been omitted, to avoid nota-
tional cluttering. When the statistical parameters, L.e., the mean counts, are known
for cach measurement, the above equation dictates the joint probability for the set of
measurements, Now the CT reconstruction problem can be formulated as a standard
statistical learming problem: after the measurements {Ny, Na, ..o, Ny} are given, how
does one estimare the statistical parameters (N1, N2, . ... Ny 1?2 On alternatively, how
does one extinmeate lutf} since these linear attennation coefficients are related to the
mean counts as shown in Eg. (6.3)7 There are several different approaches in statistics
to address this statistical learning problem, as will be discussed below,

Maximum Likelihood Method

The first way of addressing the above statistical learning problem is to use Fisher's
maximum likelihood (ML) method, In this method, when the values of {N, N2, ...,
Ny} are obtained from experimental measurements, the formula on the right-hand
side of Eg. (6.5) becomes a {function of the statistical parameters {ﬁ_.n’h Aoy oo I'l_.n’,u_l
and this function is called the likelihood of the statistical parameters, To find a point
estimate of the statistical parameters, what Fisher suggesied is o maximize the log-
likelihood function as follows:

it}
[1(X) = arg max Z{N,- InN; — N;).
pE) oy
M )
= arg max Z (—N,- f dxu(x) — Njpexp (—f dxp(x ])) 6.6}
,'.Hf:l i=1 £; ta

where N; in Eq. (6.2) has been substituted in the second line to make the target
quantity u(x) transparent. The term that is not related to N; has been dropped in the
above equation. If we denote P; = [, d¥u(¥), then the above optimization problem
enjoys the following stationarity conditions;
P, =f dTp(T) = In —,
i N;

i

i=12.....M. (6.7}

N,
Therefore, one can solve for y{f} using the measured quantities ﬂf.-“ and N;. In this
ML estimate formuolation, repeated measurements are required Lo inler Nin. but this
cin be done experimentally since there is no image object involved and thus there is
no concern of radiation risks to a patient.
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