Edited by Jong Chul Ye, Yonina C. Eldar, and Michael Unser

Deep Learning for Biomedical Image Reconstruction

Cambridge University Press & Assessment 978-1-316-51751-2 — Deep Learning for Biomedical Image Reconstruction Edited by Jong Chul Ye , Yonina C. Eldar , Michael Unser Frontmatter More Information

Deep Learning for Biomedical Image Reconstruction

Edited by

JONG CHUL YE Korea Advanced Institute of Science and Technology (KAIST)

YONINA C. ELDAR Weizmann Institute of Science, Israel

MICHAEL UNSER École Polytechnique Fédérale de Lausanne, Switzerland

1

2

3

Cambridge University Press & Assessment 978-1-316-51751-2 — Deep Learning for Biomedical Image Reconstruction Edited by Jong Chul Ye, Yonina C. Eldar, Michael Unser Table of Contents <u>More Information</u>

Contents

List Pref	•	page
	I Theory of Deep Learning for Image Reconstruction	
	nalizing Deep Neural Networks	
	ael Unser	
	Introduction	
1.2	Primary Components of Neural Networks	
	1.2.1 Vectorial Representation of a Deep Neural Network	
1.3	Training	
	1.3.1 The Backpropagation Algorithm	
1.4	Categorical Loss for Classification	
1.5	Good Practice for Training DNNs	
Geoi	netry of Deep Learning	
Jong	Chul Ye and Sangmin Lee	
2.1	Introduction	
2.2	Limitations of Classical Machine Learning	
	2.2.1 Kernel Machines	
	2.2.2 Shallow Neural Networks	
	2.2.3 Frame Representation	
2.3	Understanding Deep Neural Networks	
	2.3.1 Multi-Layer Perceptron	
	2.3.2 Convolutional Neural Networks	
2.4	Generalization Capability of Deep Neural Networks	
	2.4.1 Deep Double Descent	
	2.4.2 High-Dimensional Partition Geometry for Generalization	
2.5	Summary	
	el-Based Reconstruction with Learning: From Unsupervised to Supervis	ed
	Beyond	
	en Huang, Siqi Ye, Michael T. McCann, and Saiprasad Ravishankar	
3.1		
3.2	Classical Model-Based Image Reconstruction	

Cambridge University Press & Assessment 978-1-316-51751-2 — Deep Learning for Biomedical Image Reconstruction Edited by Jong Chul Ye , Yonina C. Eldar , Michael Unser Copyright information <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316517512

DOI: 10.1017/9781009042529

© Cambridge University Press & Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-316-51751-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

viii	Contents			
		21		
	3.3 MBIR with Unsupervised Learning	31		
	3.3.1 Synthesis Dictionary Learning	32		
	3.3.2 Sparsifying Transform Learning3.3.3 Autoencoder	33 36		
	3.3.4 Generative Adversarial Network (GAN)-Based Methods	37		
	3.3.5 Deep Image Prior	38		
	3.4 MBIR with Supervised Learning	39		
	3.4.1 Plug-and-Play	39		
	3.4.2 Unrolling	41		
	3.5 Case Study: Combined Supervised–Unsupervised (SUPER) Learning	41		
	3.5.1 SUPER Reconstruction	42		
	3.5.2 SUPER Training	44		
	3.5.3 Mathematical Underpinnings of SUPER	44		
	3.6 Discussion and Future Directions	45		
4	Deep Algorithm Unrolling for Biomedical Imaging	53		
	Yuelong Li, Or Bar-Shira, Vishal Monga, and Yonina C. Eldar			
	4.1 Introduction	53		
	4.2 Development of Algorithm Unrolling	56		
	4.2.1 Iterative Shrinkage and Thresholding Algorithm	56		
	4.2.2 LISTA: Learned Iterative Shrinkage and Thresholding Algorithm	n 57		
	4.2.3 Towards a Theoretical Understanding of Algorithm Unrolling	58		
	4.2.4 Unrolling Generic Iterative Algorithms	60		
	4.3 Deep Algorithm Unrolling for Biomedical Imaging	61		
	4.3.1 Applications of Unrolling in Computed Tomography	62		
	4.3.2 Unrolling in Super-Resolution Microscopy	66		
	4.3.3 Applications of Unrolling in Ultrasound	68		
	4.3.4 Applications of Unrolling in Magnetic Resonance Imaging	72		
	4.3.5 Unrolling Techniques across Multiple Biomedical			
	Imaging Modalities	76		
	4.4 Perspectives and Recent Trends	80		
	4.4.1 Why is Unrolling So Effective for Biomedical Imaging?	80		
	4.4.2 Emerging Unrolling Trends for Biomedical Imaging4.5 Conclusions	81 82		
	Part II Deep-Learning Architecture for Various Imaging Architectures			
5	Deep Learning for CT Image Reconstruction			
	Haimiao Zhang, Bin Dong, Ge Wang, and Baodong Liu			
	5.1 General Background	89		
	5.2 Major Problems and Deep Solutions	90		
	5.2.1 Low-Dose CT Denoising	91		
	5.2.2 CT Image Super-Resolution	93		
	5.2.3 Limited Angle, Sparse-View, Interior CT	93		

		Contents	ix
		5.2.4 Spectral CT	97
		5.2.5 Metal-Artifacts Reduction	98
		5.2.6 Motion-Artifacts Reduction	98
	5.3	Deep-Learning-Empowered Dedicated Systems	99
		5.3.1 C-Arm CT	99
		5.3.2 Dental CT	99
		5.3.3 Cabin CT	100
		5.3.4 CT for Covid-19	100
		5.3.5 Computed Laminography	100
	5.4	Data Synthesis and Transfer	101
	5.5	Important Topics	102
6	Deep	Learning in CT Reconstruction: Bringing the Measured Data to Tasks	114
	-	-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han,	
		ng Chul Ye	114
		Introduction	114
		CT Imaging Physics and Reconstruction-Problem Formulations	115
		6.2.1 CT Image Reconstruction Problem Formulation: A	115
		Deterministic Approach	115
		6.2.2 CT Reconstruction Problem Formulation (II):	117
		Statistical Learning Framework	117
		6.2.3 CT Reconstruction Problem Formulation (III):	101
		Deep-Learning Framework	121
		6.2.4 CT Reconstruction Problem Formulation (IV):	
		Combining Deep Learning with either Analytical or	100
		Statistical IR Framework	122
		Deep Learning in CT Reconstruction: From Sinogram to Image Directly	123
		6.3.1 iCT-Net for Image Reconstruction with Diagnostic Purpose	125
		6.3.2 ScoutCT-Net: Reconstruction of 3D Tomographic	
		Patient Models from Two-Scout-View of Projections	130
		Deep Learning in CT Reconstruction: Hybrid Deep Learning with DBP	138
		6.4.1 Region-of-Interest (ROI) Tomography	138
		6.4.2 Cone-Beam Artifact Removal	142
		Deep Learning in CT Reconstruction: Synergy of Deep Learning and	
		Statistical IR	150
		6.5.1 DL-PICSS Reconstruction Pipeline	151
		6.5.2 Results: Reconstruction Accuracy Quantification and	
		Generalizability Tests	152
	6.6	Synergy of FBP, Deep Learning, and Statistical IR	156
	6.7	Summary	160
7		view of the Deep-Learning Reconstruction of Accelerated MRI	166
		a Johnson and Florian Knoll	100
	7.1	Overview of Image Reconstruction for Accelerated MR Imaging	166

X	Contents			
		167		
	7.2 Parallel Imaging	167		
	7.3 Compressed Sensing	168		
	7.4 Machine Learning	169		
	7.5 Experimental Results	171		
	7.5.1 Data Acquisition and Experimental Design	171		
	7.5.2 Parallel Imaging	172		
	7.5.3 Compressed Sensing	172		
	7.5.4 Machine Learning 7.6 Summary	173 174		
8	Model-Based Deep-Learning Algorithms for Inverse Problems	177		
-	Mathews Jacob, Hemant K. Aggarwal, and Qing Zou			
	8.1 Introduction	177		
	8.2 Model-Based Approaches that Rely on Shallow Learning	178		
	8.2.1 Image Formation and Forward Model	178		
	8.2.2 Model-Based Algorithms	178		
	8.2.3 Challenges with Traditional Model-Based Algorithms	179		
	8.3 Direct Inversion-Based Deep-Learning Algorithms	180		
	8.4 Model-Based Deep-Learning Image Recovery Using Plug-and-Play			
	Methods	182		
	8.4.1 Denoising Networks	182		
	8.4.2 Autoencoders	182		
	8.4.3 Generative Adversarial Networks (GANs)	183		
	8.4.4 Benefits and Challenges of Plug-and-Play Methods	183		
	8.5 Model-Based Deep-Learning Algorithms with Unrolling and			
	End-to-End Optimization	184		
	8.5.1 Benefits and Challenges	186		
	8.6 Model-Based Deep-Learning Reconstruction Without Pre-Learning	187		
	8.6.1 Single-Image Recovery using DIP	187		
	8.6.2 Inverse Problems Involving Multiple Images in a Manifold	188		
	8.7 Model-Based Deep-Learning Image Reconstruction: General			
	Challenges, Current Solutions, and Opportunities	189		
	8.7.1 Lack of Distortion-Free Training Data	189		
	8.7.2 Vulnerability to Input Perturbations and Model Misfit	191		
	8.7.3 Joint Design of System Matrix and Image Recovery	193		
	8.8 Summary	194		
9	k-Space Deep Learning for MR Reconstruction and Artifact Removal			
	Mehmet Akcakaya, Gyutaek Oh, and Jong Chul Ye			
	9.1 Introduction	200		
	9.2 Scan-Specific <i>k</i> -Space Learning	202		
	9.2.1 Scan-Specific Neural Networks for <i>k</i> -Space Interpolation	202		
	9.3 <i>k</i> -Space Deep Learning using Training Data	208		
	9.3.1 Data-Driven <i>k</i> -Space Deep Learning for <i>k</i> -Space Interpolation	208		

CAMBRIDGE

	Contents	Х
		010
	9.3.2 MR Motion-Artifact Removal	213
	9.4 Summary and Outlook	218
10	Deep Learning for Ultrasound Beamforming	223
	Ruud J. G. van Sloun, Jong Chul Ye, and Yonina C. Eldar	
	10.1 Introduction and Relevance	223
	10.2 Ultrasound Scanning in a Nutshell	224
	10.2.1 Focused Transmits/Line Scanning	224
	10.2.2 Synthetic Aperture	225
	10.2.3 Plane Wave Ultrafast	225
	10.3 Digital Ultrasound Beamforming	226
	10.3.1 Digital Beamforming Model and Framework	226
	10.3.2 Delay-and-Sum	227
	10.3.3 Adaptive Beamforming	229
	10.4 Deep-Learning Opportunities	231
	10.4.1 Opportunity 1: Improving Image Quality	231
	10.4.2 Opportunity 2: Enabling Fast and Robust Compressed Sensing	232
	10.4.3 Opportunity 3: Beyond MMSE with Task-Adaptive Beamforming 10.4.4 A Brief Overview of the State-of-the-Art	234 234
	10.4.4 A Bher Overview of the State-of-the-Aft 10.4.5 Public Datasets and Open Source Code	234
	10.4.5 Fublic Datasets and Open Source Code 10.5 Deep-Learning Architectures for Ultrasound Beamforming	235
	10.5.1 Overview and Common Architectural Choices	235
	10.5.2 DNN Directly on Channel Data	236
	10.5.3 DNN for Beam-Summing	236
	10.5.4 DNN as an Adaptive Processor	238
	10.5.5 DNN for Fourier-Domain Beam-Summing	239
	10.5.6 Post-Filtering after Beam-Summing	240
	10.6 Training Strategies and Data	241
	10.6.1 Training Data	241
	10.6.2 Loss Functions and Optimization	242
	10.7 New Research Opportunities	245
	10.7.1 Multi-Functional Deep Beamformer	245
	10.7.2 Unsupervised Learning	246
11	Ultrasound Image Artifact Removal using Deep Neural Networks	252
	Jaeyoung Huh, Shujaat Khan, and Jong Chul Ye	
	11.1 Introduction	252
	11.2 Ultrasound Artifacts	253
	11.2.1 Time–Space Mismatch	253
	11.2.2 Speed-of-Sound Mismatch	254
	11.2.3 Attenuation	255
	11.2.4 Fundamental Limitations of US Physics	256
	11.3 Deep Learning for US Artifact Removal	258
	11.3.1 Deconvolution	258

xii	Contents			
	11.3.2 Despeckle	26		
	11.3.3 Reverberation	26		
	11.3.4 Phase Aberration	26		
	11.3.5 Side Lobes	20		
	11.4 Summary and Outlook	27		
	Part III Generative Models for Biomedical Imaging			
12	Image Synthesis in Multi-Contrast MRI with Generative Adversarial Networks	27		
	Tolga Çukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin Chung,			
	and Jong Chul Ye			
	12.1 Introduction	27		
	12.2 Physics for MR Contrast	28 28		
	12.3 Brief Review of Generative Adversarial Networks (GANs)	20 28		
	12.4 MR Contrast Conversion using GAN 12.4.1 Unconditional GANs	20 28		
	12.4.2 Conditional GANs	28		
	12.5 Collaborative GAN for MR Contrast Conversion	28		
	12.5.1 Collaborative GAN	28		
	12.5.2 MR Contrast Synthesis using CollaGAN	29		
	12.6 Summary and Outlook	29		
13	Regularizing Deep-Neural-Network Paradigm for the Reconstruction of Dynamic			
	Magnetic Resonance Images	29		
	Jaejun Yoo and Michael Unser			
	13.1 Introduction	29		
	13.1.1 Challenges of dMRI	29		
	13.1.2 Image-Formation Model of dMRI	30		
	13.2 Reconstruction Approaches in dMRI	30		
	13.2.1 Sparsity and Low-Rank-Based Methods	30		
	13.2.2 Manifold Learning	30		
	13.2.3 Supervised Deep Learning	30		
	13.3 Regularizing Deep-Neural-Network Paradigm13.3.1 Deep Image Prior (DIP)	30 30		
	13.3.2 Time-Dependent Deep Image Prior (TD-DIP)	30		
	13.4 Results	30		
	13.4 Results 13.5 Discussion	30		
	13.6 Conclusion	30		
14	Regularizing Neural Network for Phase Unwrapping	31		
	Thanh-an Pham, Fangshu Yang, and Michael Unser			
	14.1 Problem Formulation	31		
	14.1.1 Classical Methods	31		
	14.1.2 Deep-Learning-Based Approaches	31		

CAMBRIDGE

	Contents	xiii
	14.2 Phase Unwrapping with Deep Image Prior	314
	14.2.1 Problem Formulation	314
	14.2.2 Architecture and Optimization Strategy	315
	14.3 Experiments	317
	14.3.1 Simulated Data	317
	14.3.2 Phase Images of Organoids	320
	14.4 Discussion	322
15	CryoGAN: A Deep Generative Adversarial Approach to Single-Particle Cryo-EM	325
	Michael T. McCann, Laurène Donati, Harshit Gupta, and Michael Unser	
	15.1 The Reconstruction Problem in Single-Particle Cryo-EM	325
	15.1.1 The Quest for Protein Structures	325
	15.1.2 Single-Particle Cryo-EM	325
	15.1.3 The Image-Formation Model	326
	15.1.4 A Challenging Reconstruction Procedure	327
	15.2 Reconstruction Approaches in Single-Particle Cryo-EM	327
	15.2.1 Projection Matching	328
	15.2.2 Maximum-Likelihood Estimation	328
	15.2.3 Method of Moments	329
	15.3 The CryoGAN Framework	329
	15.3.1 Distribution Matching	329
	15.3.2 GANs for Distribution Matching	330
	15.3.3 Mathematical Framework for CryoGAN	330
	15.4 The CryoGAN Algorithm	333
	15.4.1 The Cryo-EM Physics Simulator	333
	15.4.2 The CryoGAN Discriminator Network	335
	15.4.3 Reconstruction from a Realistic Synthetic Dataset	335
	15.4.4 Next Steps	336
	15.5 Conclusion	338

6 Deep Learning in CT Reconstruction: Bringing the Measured Data to Tasks

Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han, and Jong Chul Ye

6.1 Introduction

The positive impact that diagnostic computed tomography (CT) imaging has made upon the diagnosis and treatment of symptomatic patients over the past few decades is unprecedented. However, despite the remarkable contribution of CT to modern healthcare, the issue of the small theoretical cancer risk associated with the use of ionizing radiation in CT has recently become a public concern.

To address the public concerns, many strategic discussion sessions have been organized by the National Institutes of Health (NIH) and the American Association of Physicists in Medicine (AAPM) to map out the scientific steps needed to accomplish the goal of sub-mSv CT imaging. A consensus report was published [1] to guide the development of low-dose CT imaging technologies. The research and development efforts from academic, industrial, and clinical societies in the past decade have resulted in the development and implementation of a variety of radiation-dose-reduction strategies for CT exams.

To lower the radiation dose in CT exams, advanced CT hardware technologies have been developed and incorporated into the current clinical CT systems, including but not limited to, newer generations of CT detectors with improved detection quantum efficiency, beam-shaping filters and dynamic *z*-axis collimators that limit the dose at the periphery of the patient and edge of the scan range, automatic exposure control with the flexibility to modulate tube potential and tube current, and photoncounting CT.

In addition to hardware technology developments, software technologies have also played a major role in this joint effort of radiation dose reduction. Many advanced image-processing techniques working in the sinogram projection-data domain or in the reconstructed-image domain, or in both domains jointly in fully statistical iterative reconstruction (IR) format have been developed and some of these methods have been incorporated into commercial products for routine clinical uses. In the past decade or so, such newly developed low-dose reconstruction or processing software has been rigorously evaluated with large patient cohorts. It has been found that, after a decade-long effort to reduce CT radiation dose with IR software techniques, the radiation dose can be reduced by up to 25 percent with statistical IR techniques *without sacrificing clinical diagnostic quality* [2, 3].

This status quo of the radiation dose reduction factor using statistical IR leaves plenty of room for the development of new techniques to further reduce radiation dose in clinical CT exams, particularly, new techniques that are sufficiently flexible to leverage the intrinsic advantages of analytical reconstruction methods, such as filtered back projection or differentiated back projection filtration-based methods [4] and the statistical learning principles that have been extensively investigated in statistical IR methods. In this regard, the recent advances in deep learning provide us with an ideal computational framework that can be developed to directly reconstruct CT images from sinogram data, or can be combined with analytical reconstruction methods to address the challenges encountered in their application, or can be combined with statistical IR to address reconstruction accuracy and the generalizability concerns associated with deep-learning methods.

The foundational physics principles of CT image reconstruction problems will be presented in Section 6.2. After that, deep learning in CT image reconstruction will be described, with examples on how to perform reconstruction directly from sinogram to image in Section 6.3, how to combine deep learning with analytical reconstruction methods in Section 6.4, and how to combine deep learning with statistical IR methods in Section 6.5.

6.2 CT Imaging Physics and Reconstruction-Problem Formulations

In this section, by following the experimental image-formation processes in CT, image-reconstruction problems are formulated from an imaging-physics standpoint in order to make the scientific foundations of each reconstruction framework transparent. Particularly, the assumptions implicitly or explicitly used in the past will be made transparent in our formulations. This review of problem formulation also aims to put the rapid rising of deep-learning methods into a proper scientific context and to find a niche for deep-learning methods in the big picture of radiation dose reduction in CT. We also hope that this section will inspire cross-pollination between analytical image reconstruction, statistical IR, and data-driven deep-learning-based reconstruction strategies, with the ultimate objective of developing some innovative reconstruction strategies with a high clinical impact.

6.2.1 CT Image Reconstruction Problem Formulation: A Deterministic Approach

The physics of X-ray attenuation by an image object is captured by the empirical Beer– Lambert law, which characterizes the mean photon number before and after the X-ray beam interacts with the image object. The interactions of the X-ray photons and the image object are characterized by the so-called linear attenuation coefficient, $\mu(\vec{x}, \varepsilon)$, at a given spatial location and X-ray energy ε . The mean photon number recorded at the *i*th detector element is given by the Beer–Lambert law as follows:

$$\bar{N}_i = \bar{N}_{i0} \int_0^{\varepsilon_{max}} d\varepsilon \Omega(\varepsilon) \exp\left(-\int_{\ell_i} d\vec{x} \,\mu(\vec{x},\varepsilon)\right),\tag{6.1}$$

Therefore, when the repetition of experimental data acquisition is prohibited, as in clinical CT acquisitions, *CT image reconstruction must be formulated as a statistical learning problem: to statistically infer the object information* $\mu(\vec{x}, \bar{\epsilon})$, *i.e., the statistical parameters given a set of measured data* $\{N_1, N_2, \ldots, N_M\}$.

Since the measurements at different detector elements can be considered to be statistically independent, the joint probability of a measured dataset is then given by

$$P(\{N_1, N_2, \dots, N_M\} | \mu(\vec{x})) = \prod_{i=1}^M P(N_i | \mu(\vec{x})) = \prod_{i=1}^M \frac{\bar{N}_i^{N_i} e^{-\bar{N}_i}}{N_i!}, \quad (6.5)$$

where the effective energy dependence $\bar{\varepsilon}$ in $\mu(\vec{x}, \bar{\varepsilon})$ has been omitted, to avoid notational cluttering. When the statistical parameters, i.e., the mean counts, are known for each measurement, the above equation dictates the joint probability for the set of measurements. Now the CT reconstruction problem can be formulated as a standard statistical learning problem: after the measurements $\{N_1, N_2, \ldots, N_M\}$ are given, how does one estimate the statistical parameters $\{\bar{N}_1, \bar{N}_2, \ldots, \bar{N}_M\}$? Or, alternatively, how does one estimate $\mu(\vec{x})$ since these linear attenuation coefficients are related to the mean counts as shown in Eq. (6.3)? There are several different approaches in statistics to address this statistical learning problem, as will be discussed below.

Maximum Likelihood Method

The first way of addressing the above statistical learning problem is to use Fisher's maximum likelihood (ML) method. In this method, when the values of $\{N_1, N_2, ..., N_M\}$ are obtained from experimental measurements, the formula on the right-hand side of Eq. (6.5) becomes a function of the statistical parameters $\{\bar{N}_1, \bar{N}_2, ..., \bar{N}_M\}$ and this function is called the likelihood of the statistical parameters. To find a point estimate of the statistical parameters, what Fisher suggested is to maximize the log-likelihood function as follows:

$$\hat{\mu}(\vec{x}) = \arg \max_{\mu(\vec{x})} \sum_{i=1}^{M} (N_i \ln \bar{N}_i - \bar{N}_i),$$

= $\arg \max_{\mu(\vec{x})} \sum_{i=1}^{M} \left(-N_i \int_{\ell_i} d\vec{x} \, \mu(\vec{x}) - \bar{N}_{i0} \exp\left(-\int_{\ell_i} d\vec{x} \, \mu(\vec{x})\right) \right)$ (6.6)

where \bar{N}_i in Eq. (6.2) has been substituted in the second line to make the target quantity $\mu(\vec{x})$ transparent. The term that is not related to \bar{N}_i has been dropped in the above equation. If we denote $P_i = \int_{\ell_i} d\vec{x} \mu(\vec{x})$, then the above optimization problem enjoys the following stationarity conditions:

$$P_i = \int_{\ell_i} d\vec{x} \,\mu(\vec{x}) = \ln \frac{\bar{N}_{i0}}{N_i}, \qquad i = 1, 2, \dots, M.$$
(6.7)

Therefore, one can solve for $\mu(\vec{x})$ using the measured quantities \bar{N}_{i0} and N_i . In this ML estimate formulation, repeated measurements are required to infer \bar{N}_{i0} , but this can be done experimentally since there is no image object involved and thus there is no concern of radiation risks to a patient.