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Abstract
Background: A tomographic patient model is essential for radiation dose mod-
ulation in x-ray computed tomography (CT). Currently, two-view scout images
(also known as topograms) are used to estimate patient models with rela-
tively uniform attenuation coefficients. These patient models do not account
for the detailed anatomical variations of human subjects, and thus, may limit
the accuracy of intraview or organ-specific dose modulations in emerging CT
technologies.
Purpose: The purpose of this work was to show that 3D tomographic patient
models can be generated from two-view scout images using deep learning
strategies, and the reconstructed 3D patient models indeed enable accurate
prescriptions of fluence-field modulated or organ-specific dose delivery in the
subsequent CT scans.
Methods: CT images and the corresponding two-view scout images were ret-
rospectively collected from 4214 individual CT exams. The collected data were
curated for the training of a deep neural network architecture termed ScoutCT-
NET to generate 3D tomographic attenuation models from two-view scout
images. The trained network was validated using a cohort of 55 136 images
from 212 individual patients. To evaluate the accuracy of the reconstructed
3D patient models, radiation delivery plans were generated using ScoutCT-
NET 3D patient models and compared with plans prescribed based on true CT
images (gold standard) for both fluence-field-modulated CT and organ-specific
CT. Radiation dose distributions were estimated using Monte Carlo simulations
and were quantitatively evaluated using the Gamma analysis method. Modu-
lated dose profiles were compared against state-of -the-art tube current modula-
tion schemes. Impacts of ScoutCT-NET patient model-based dose modulation
schemes on universal-purpose CT acquisitions and organ-specific acquisitions
were also compared in terms of overall image appearance, noise magnitude,
and noise uniformity.
Results: The results demonstrate that (1) The end-to-end trained ScoutCT-
NET can be used to generate 3D patient attenuation models and demonstrate
empirical generalizability. (2) The 3D patient models can be used to accurately
estimate the spatial distribution of radiation dose delivered by standard helical
CTs prior to the actual CT acquisition;compared to the gold-standard dose distri-
bution,95.0% of the voxels in the ScoutCT-NET based dose maps have accept-
able gamma values for 5 mm distance-to-agreement and 10% dose difference.
(3) The 3D patient models also enabled accurate prescription of fluence-field
modulated CT to generate a more uniform noise distribution across the patient
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body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient
models enabled accurate prescription of organ-specific CT to boost image qual-
ity for a given body region-of -interest under a given radiation dose constraint.
Conclusion: 3D tomographic attenuation models generated by ScoutCT-NET
from two-view scout images can be used to prescribe fluence-field-modulated or
organ-specific CT scans with high accuracy for the overall objective of radiation
dose reduction or image quality improvement for a given imaging task.

KEYWORDS
deep learning, fluence-field modulated CT, image reconstruction, low dose CT, sparse-view recon-
struction

1 INTRODUCTION

The year 2021 marks the 50th anniversary of the first
computed tomography (CT) scan of a human patient.
Over a half -century journey, CT imaging has demon-
strated an unprecedented positive impact on the diagno-
sis and treatment of symptomatic patients. Continuous
technological advances in CT have made it an integral
component of modern medicine.1 However, the issue of
the small, but nonzero, theoretical cancer risk associ-
ated with the use of ionizing radiation in CT remains
a public concern despite its invaluable contributions to
modern patient care.2,3 To address the public concerns
regarding ionizing radiation risks due to the use of
CT in diagnosis and image-guided therapeutic proce-
dures, low-dose CT and radiation dose optimization
have become a key task in clinical medical physics prac-
tices and a central topic of research in the CT imaging
community.4,5

The research and development efforts from aca-
demic, industrial, and clinical societies in the past
decade have resulted in the development of a variety
of radiation dose reduction strategies for CT exams.
Software-related techniques include noise reduction
reconstruction or image processing algorithms that
operate on either raw data, reconstructed image data,
or both.6–13 The initial anticipation for these iterative
reconstruction (IR) algorithms was to reduce radiation
dose by 60–70%, with the potential for even further
reduction.14,15 However, recent clinical results have con-
cluded that, after a decade-long effort to reduce CT
radiation dose with IR software techniques, the status
quo is up to 25% dose reduction with IR techniques,
far short of the originally expected 60–70% or even
90% claims.16,17 On the other hand, hardware improve-
ments aim to effectively improve the dose efficiency of
CT systems. Namely, given the necessary diagnostic
image performance with the improved dose efficiency
offered by the scanner hardware, the required radia-
tion dose to a patient can be reduced with improve-
ments in hardware. Current hardware dose reduction
strategies include (1) newer generations of CT detec-
tors (such as photon-counting detectors) with improved

radiation dose efficiency,18–24 (2) beam shaping fil-
ters and dynamic z-axis collimators that limit dose at
the periphery of the patient and edge of the scan
range25, (3) automatic exposure control systems with
the flexibility to modulate tube potential and tube current
along the projection view angle direction,26–29 and (4)
intraview fluence-field modulation schemes and devices
have been extensively studied in recent years to bet-
ter account for the heterogeneous nature of human
anatomy to further reduce dose.30–40

Earlier researches on intraview fluence-field-
modulated CT demonstrated a promising 30–50%
radiation reduction compared to the current standard-
of -care when the entrance fluence field is properly
modulated based on the x-ray attenuation properties
of the image objects.32,33,35 The success of fluence-
field-modulated CT-based dose reduction relies on the
availability of an accurate 3D tomographic attenuation
model for prescription of a personalized dose modu-
lation scheme before the actual CT scan is executed.
In the current clinical CT imaging workflow, the needed
patient attenuation information for dose modulations is
estimated from the planar scout images (also known
as topograms) acquired at two orthogonal view angles
(e.g., 90◦ and 180◦) under a scanning-beam acquisition
to overcome the narrow coverage of the CT detector
along the superior–inferior (SI) direction. During a scout
scan, the x-ray beam is narrowly collimated (e.g., to 5
mm); the patient table translates continuously, whereas
the detector is read out at a uniform frame rate. The
recorded frames are stitched together based on the
frame rate and table speed and then scaled to generate
the overall scout image that covers the desired patient
anatomy for the purpose of patient positioning and
generation of the patient model for dose modulations.
After the scout images are acquired, patient attenuation
information for other view angles can be estimated by
interpolating two-view scout images based on a cosine
function or other models.41 However, these estimation
strategies do not account for the heterogeneous patient
attenuation distributions, and thus, are not able to
provide sufficiently accurate patient information neces-
sary for prescribing more detailed and accurate dose
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modulations. The concept of ultralow-dose “3D CT
scout” has been investigated42,43 to obtain the needed
3D patient models for prescribing intraview or organ-
specific CT dose modulations. Despite its conceptual
simplicity, a wide adoption of 3D CT scout strategies in
practice encountered several challenges: (1) additional
radiation dose is introduced to the patient by this addi-
tional CT acquisition; (2) noise streaks caused by strong
photon starvation in these ultralow-dose CT are often
too severe to allow reliable estimations of patient- and
organ-specific attenuation distributions; (3) the quanti-
tative accuracy of CT numbers, which is important for
the calculation of radiologic paths in intraview dose
modulation schemes, is significantly compromised at
ultralow-dose levels.44,45 Besides using 3D CT scout
images and two-view 2D scouts, tube current modula-
tions can also be prescribed using online feedback of
the previously measured 180◦ conjugate projection data
at a different but nearby z-location (helical or step-and-
shoot axial acquisitions) or at the same z-location but at
a prior time (dynamic CT scans). These interview tube
current modulation schemes have been successfully
implemented by different CT manufacturers to enable
their own vendor-specific tube current modulation
schemes to reduce dose while maintaining the overall
image quality.46,47 The limitation of the online feedback
strategy lies in the fact that it is not applicable to most
task- or organ-based dose deliveries that require the
optimization of the modulation schemes ahead of the
actual CT scan. Additionally, for scan applications with a
single axial gantry rotation (e.g.,coronary CT performed
on 256- or 320-slice scanners with 16 cm z coverage),
the online feedback strategy is not applicable even for
interview tube current modulations.

In summary, there remains an unmet need for a robust
method to generate 3D tomographic patient models to
account for the heterogeneous attenuation distributions
of individual patients. It is highly desirable to generate
a 3D tomographic patient attenuation model from two
2D scout images to leverage its clinically favorable fea-
tures: super low radiation dose (about 0.04 mGy) and
broad anatomical coverage along the SI direction. To
accomplish this overall objective, the following two sci-
entific challenges must be addressed: (1) Technically,
what is the reconstruction method that enables tomo-
graphic reconstruction using two scout images stitched
together from many small pieces? (2) If a technical
solution is available, given the severe ill-posedness of
the two-view reconstruction problem itself, it is antic-
ipated that the reconstruction accuracy may be lim-
ited. Therefore, the practical value of the reconstructed
3D patient attenuation model in radiation dose modula-
tions must be evaluated to carefully examine whether
the 3D patient model generated from two-view scout
images provides sufficient information for the purpose of
prescribing intraview or organ-specific dose-modulated
CT.

Regarding the technical feasibility to reconstruct a 3D
tomographic attenuation patient model from two pro-
jection view angles, it would be extremely challenging,
if not impossible, to use traditional analytical or iter-
ative image reconstruction strategies due to the diffi-
culty of hand-crafting the appropriate regularizers to
regularize the severe ill-posedness of this reconstruc-
tion problem. However, recent advances in data-driven
deep learning approaches offer a new hope to regular-
ize ill-posed inverse problems by learning the needed
regularizers from well-curated training data sets. As a
matter of fact, by leveraging the improved regression
capabilities of deep neural networks, deep learning-
based methods have been introduced into the CT image
processing and reconstruction field in recent years and
have demonstrated immense promise toward address-
ing difficult problems previously not solvable with tra-
ditional analytical and iterative methods. Earlier works
focused primarily on the use of image-to-image neural
network models under a supervised learning paradigm
to reduce image noise.48–53 Recent works in the con-
text of image reconstruction have integrated model-
based IR methods with neural networks via learned
regularizers.54–58 Direct learning of CT reconstruction
from projection data acquired under a wide variety of
conditions has also been demonstrated:Li et al. showed
promising results for low-dose CT and sparse-view CT
reconstructions,59 but not under the extreme condition
of only one or two projection views.

Recently, several groups have pioneered tomo-
graphic reconstruction from one or two views projection
images.60–63 It has been shown that under the condi-
tion that a prior CT or cone-beam CT volume of the
same patient is available, digitally reconstructed radio-
graphs (DRRs) can be generated from prior CT volumes
by a numerical forward cone-beam projection operation.
These DRRs and their corresponding image volumes
can be used to generate synthetic training data pairs to
train a variety of deep neural network architectures to
accomplish 3D reconstruction from one or two synthetic
views of projection data. For example, in the context of
four-dimensional cone-beam CT (4D CBCT), using the
DRRs and the corresponding image volumes from six
out of ten respiratory phases, a deep learning model
was trained to reconstruct 3D image volumes using
DRRs from a single-view angle.64 The performance of
the proposed reconstruction strategy was evaluated by
applying the trained model to the DRRs of the remaining
four respiratory phases of the same patient. However, it
has not been shown that the proposed strategy can be
used to reconstruct 4D CBCT images from the exper-
imentally acquired cone-beam projection data yet. It is
also unclear how the proposed strategy would gener-
alize from one patient to another. In another interesting
work,Ying et al. 65 trained a deep learning model termed
the X2CT-GAN network to reconstruct a CT image vol-
ume from DRRs. Due to the differences between DRRs
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904 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

and the available chest x-ray radiography images in pub-
lic databases that were acquired using x-ray cone-beam
image acquisitions, the authors used a cycle-GAN to
perform style transfer from available chest x-ray radiog-
raphy images to DRRs and then used the output DRRs
to reconstruct the CT-like images.Due to the differences
between the slit-scanning acquisitions used in scout
imaging66 and the cone-beam acquisitions used in x-ray
radiography, the authors in Ref. 65 were not able to gen-
erate CT-like images from actual scout images.Addition-
ally,there is no reference CT image volume of the patient
available to evaluate the accuracy of the reconstructed
CT-like images. Similarly, Henzler et al. also trained a
network using paired DRRs and CT images to generate
volumetric images and rendering of high-contrast struc-
tures (e.g., skulls) inside the image objects from single-
view DRR images.67 However, there is no soft tissue
reconstruction demonstrated yet in their work. In another
work by Liu et al.,68 the AUTOMAP neural network69

was adapted for sparse-view reconstruction using two-
view or four-view DRRs. Some good initial results have
also been achieved despite the encountered challenges
of severe organ distortions in reconstructed images as
pointed out by the authors.

To summarize, despite the amazing progress made,
the aforementioned two scientific questions remain
to be answered in an attempt to reconstruct a 3D
patient attenuation model for radiation dose prescrip-
tion in CT. This motivated the purpose of this work:
(1) To develop a deep-learning-based method referred
to as ScoutCT-NET to generate 3D patient atten-
uation models directly from two-view scout images
acquired in clinical CT exams. (2) To demonstrate the
trained ScoutCT-NET can be used to directly recon-
struct patient-specific 3D patient models from 2D scout
images. (3) To demonstrate both intraview dose modula-
tions and organ-specific dose modulations can be accu-
rately prescribed based on ScoutCT-NET 3D patient
models.

2 METHODS

2.1 ScoutCT-NET image
formation—Problem formulation

Classical statistical image tomographic reconstruction
techniques aim to solve the following optimization prob-
lem:

x⃗∗ = arg min
x⃗

[L(y⃗ − Ax⃗) + 𝜆R(x⃗)], (1)

where x⃗ denotes a vectorized image matrix to be
reconstructed, y⃗ denotes the vectorized projection data,
and A denotes the CT system matrix. In general,

L(y⃗ − Ax⃗) is considered a function that quantifies data
consistency (e.g., weighted least squares), and 𝜆R(x⃗)
represents a regularization function whose strength
is controlled by the parameter 𝜆. From a statistical
inference perspective, the classical statistical image
reconstruction techniques aimed to seek for a set of
statistical parameters that maximize the a posteriori
probability.

In contrast, the central objective of ScoutCT-NET
aims to directly learn a transform G to generate a 3D
attenuation model of each patient using two orthogonal-
view scout images as inputs. To parameterize the
desired target transform G, a deep neural network was
used to leverage its powerful expression capacities. The
proposed two-view ScoutCT-NET 3D patient model esti-
mation problem is formulated as the following optimiza-
tion problem:

G∗ = arg min
G

max
D

{
𝔼y⃗

[‖‖‖y⃗ − AG(y⃗)‖‖‖
2

2

]

+ 𝜆𝔼y⃗,x⃗p

[‖‖‖x⃗p − G(y⃗)‖‖‖1

]

+ 𝔼x⃗p

[
lnD(x⃗p)

]
+ 𝔼y⃗

[
1 − lnD(G(y⃗))

]}
. (2)

In the above equation, 𝔼 denotes the expected value
using the empirical statistical distribution, y⃗ is the vec-
tor representation of the input two-view scout images,
the 3D model of the image object is given by x⃗ = G(y⃗),
and x⃗p denotes true CT images for the purpose of learn-
ing the neural network transform G. The factor 𝜆 is a
scalar that controls the strength of the L1 regularization
term and D represents a discriminator deep neural net-
work that serves as a learned regularizer to enforce G to
approximate the distribution of x⃗p. The needed mapping
x⃗ = G(y⃗) can be learned in an end-to-end manner using
the well-established adversarial neural network training
methodology, in which G aims to minimize the data con-
sistency loss and the L1-norm between the resulting
image and the prior image; at the same time, a cross-
entropy loss is maximized to enforce G to approximate
the distribution of x⃗p. This prevents the model from sim-
ply learning an identity function that only minimizes a
data consistency loss.

2.2 Neural network architecture and
implementation

The overall architecture of ScoutCT-NET is shown in
Figure 1. In this architecture, the deep neural network
G in Equation (2) takes a 888 × 5 section from each
of the two scout images as input to generate a subvol-
ume of tomographic images with 288 × 288 × 5 voxels.
This is based on the fact that in reality, scout images
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SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION 905

F IGURE 1 ScoutCT-NET deep neural network architecture. The network takes a 888 × 5 narrow section from each of the two scout images
as input to generate a subvolume of tomographic images with 288 × 288 × 5 voxels. This process is repeated for each section of the scout
images. In order to map the 2D projections into the 3D image space, the first layer of the network performs a direct backprojection operation that
is then followed by 24 convolutional layers arranged into a simplified U-Net architecture with four vertical levels (only three vertical levels are
shown for diagram simplicity)

are acquired under a narrow-beam scanning mode on
MDCT scanners. This is different from the cone-beam
acquisition geometry used by most x-ray radiography
and fluoroscopy systems. In order to map the narrow
section of the scout images onto the 3D image space,
the first layer of the network consists of a direct back-
projection operation that is then followed by 24 con-
volutional layers that are arranged in a simplified U-
Net architecture with four vertical levels.70 The network
was trained using a conditional adversarial loss71,72 with
a 24-layer convolutional discriminator using a ResNet
architecture.73,74

The exact neural network layer configuration is as
follows: the U-Net encoder uses C64-C64-sc1-MPs2-
C128-C128-sc2-MPs2-C256-C256-sc3-MPs2-C512-
C512-sc4-MPs2-C1024-C1024, where Ck stand for
a convolutional layer with k filters, sci represents a
skip connection at level i, and MPs2 represents a
max-pooling operation with stride 2. Similarly, the
U-Net decoder layers are as follows: TC512-sc4-C512-
C512-TC256-sc3-C256-C256-TC128-sc2-C128-C128-
TC64-sc1-C64-C64-C64-C5, where TCk represents a
transpose convolution operation with k filters. All con-
volutional layers use a 3 × 3 spatial filter configuration
with ReLU activations and no batch normalization.
Backprojection and forward projection layers are
implemented as fully connected layers with weights
predefined by the system geometry and no trainable
parameters. The ResNet configuration for the discrimi-
nator network used only during training is the following:

C32s2-C32-C64-sc-C64-C64-sc-C64-C64-sc-C64-
C64-sc-(C128s2,AP-C128)-C128-sc-C128-C128-sc-
C128-C128-sc-(C256s2, AP-C256)-C256-sc-C256-
C256-sc-C256-C256-sc-FC1, where Ck stands for a
convolutional layer with k filters and Cks2 represents a
convolutional layer with k filters and stride 2. sc repre-
sents the characteristic skip connection of the ResNet
architecture. Finally, the AP-Ck notation represents an
auxiliary layer consisting of a 3 × 3 average pooling
operation with stride 2 followed by a convolutional layer
of 1 × 1 × k filter to match the size and number of chan-
nels when spatial downsampling occurs in the network.
The final FC1 layer represents a fully connected layer
with one output. The first layer uses a 5 × 5 receptive
field and all other convolutional layers use a 3 × 3
spatial filter configuration with ReLU activations and no
batch normalization.

The model was implemented using TensorFlow75 ver-
sion 1.3. Network parameters were initialized using the
variance scaling method76 and trained from scratch
using stochastic gradient descent with the Adam opti-
mizer with a learning rate of 2.0 × 10−4, momentum
parameters of 𝛽1 = 0.9 and 𝛽2 = 0.999, and batch size
of 32. To avoid exploding gradients, we adopted gradi-
ent clipping in the range [−1.0,1.0]. The model was pre-
trained for four epochs to optimize the generator loss,
and then, we used early stopping when the adversarial
loss reached equilibrium in the testing cohort after an
additional four epochs.The model was trained using two
GTX 1080 Ti (NVIDIA, CA) GPUs.
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906 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

F IGURE 2 Overall study schema. More than 1.1 million CT
images and their corresponding scout image data from 4214
clinically indicated CT studies were retrospectively collected. Data
were split into three cohorts consisting of 3790 (90%), 212 (5%), and
212 (5%) CT studies for training, validation, and testing of the deep
learning model, respectively. The total number of unique data
samples used was 1 001 496 for training, 55 136 for validation, and
55,136 for testing. After the ScoutCT-NET model was trained, 3D
image localizers were calculated for the 212 testing patients and
image analysis was performed

2.3 Training data collection and
curation

More than 1.1 million CT images and their correspond-
ing scout image data from 4214 clinically indicated CT
studies were retrospectively collected. The data set was
used to train the ScoutCT-NET in order to reconstruct
3D patient attenuation models from two-view scout
images. Once the ScoutCT-NET model was trained, it
was used to generate 3D attenuation models for patients
in the testing cohort.Based on the 3D attenuation model,
intraview or organ-based dose modulation plans were
prescribed and virtually delivered. The overall study
schema is shown in Figure 2.

2.3.1 Data collection

All image data were deidentified and collected under
an Institutionally Review Board approved protocol. The
requirement for informed consent was waived for this
retrospective study. Scout and CT images from 4214
clinically indicated CT exams acquired over the period
of nine months at our institution were retrospectively col-
lected from PACS. Inclusion criteria were (1) CT exams
acquired without contrast media, (2) scanned with the
anatomical region of the chest,and (3) patients scanned
in a supine position. To avoid potential data inconsis-
tency, CT exams that presented significant image arti-
facts from metallic objects or data truncation caused by
anatomical regions outside the scanning field of view
were excluded.

2.3.2 Data curation

Each CT exam included in this work consisted of two
orthogonal-view scout images and one volume of CT

images. Scout and CT images are typically acquired
under the same tube potential to assure consistent
attenuation measurements in the scout images for the
purpose of dose-modulated CT prescriptions. The two
CT scanner models used to acquire the data are Dis-
covery CT750 HD and Revolution CT (GE Healthcare,
Waukesha,WI).Tube potentials used to acquire the data
range from 70 to 140 kV and were determined based on
the scan protocol and actual patient size. To account for
possible differences in CT image reconstruction param-
eters (i.e., image thickness, voxel size, and field of view
position), each CT image volume was translated and
scaled to the CT system global coordinates using an
affine transformation. The matrix size of every image
was 288 × 288 with 1.89 mm × 1.89 mm × 1.00 mm
voxel size. There is no special reason for using a matrix
size of 288 × 288; instead, it was just a convention used
in our work and one can also choose to use a matrix size
of 256 × 256 if it is preferred. However, the physical size
of the image voxel needs to accommodate the following
practical considerations:(1) First is to reduce the compu-
tational burden of Monte Carlo simulations. (2) Second
is to meet the condition of charged particle equilibrium
(CPE) for dose calculations. Note that the range of the
secondary electrons for the energies used in diagnostic
CT is typically less than 0.5 mm in human tissue; thus,
the choice of a 1.89 mm × 1.89 mm × 1.00 mm voxel
size satisfies the CPE condition.

2.3.3 Data partition for training, validation,
and testing

Data were split into three cohorts consisting of 3790
(90%), 212 (5%), and 212 (5%) of the total number of
CT studies for training, validation, and testing of the
ScoutCT-NET deep learning model, respectively. The
validation and testing cohorts were randomly selected
from the subset of patients who underwent a single CT
exam with one study per exam to avoid potential overlap
between the training and validation/testing data.

2.4 Quantitative evaluation of 3D
patient attenuation model generated from
ScoutCT-NET (I): Comparison of radiation
dose distribution generated from the
ScoutCT-NET 3D patient model in Monte
Carlo dose simulations

After training, ScoutCT-NET was used to process
scout images from the testing cohort to generate 3D
patient models. As the first step of evaluating the
ScoutCT-NET-based 3D patient models, standard heli-
cal CT scans were virtually delivered to both the 3D
patient models and the corresponding gold-standard
patient models to evaluate whether the absorbed dose
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SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION 907

distributions in the ScoutCT-NET-based attenuation
model match that of the gold standard. The virtual CT
scan was performed using the Monte Carlo platform
(MC-GPU version 1.3).77 A standard chest CT with a
helical pitch of 1.375,a tube potential of 120 kV,4 mm of
Al filtration,and a scanner geometry matching that of the
GE Discovery CT750 HD scanner was simulated. After
the virtual CT scans were delivered and radiation dose
distributions were calculated for both the ScoutCT-NET
patient model and the CT-based gold-standard patient
model, the gamma analysis method78 was used to eval-
uate the quantitative agreement between their dose dis-
tribution maps.

To quantify the agreement between CT and ScoutCT-
NET dose distributions and to test the empirical gener-
alizability of the ScoutCT-NET, the percentage of vox-
els with a passing gamma value (≤ 1) was calculated
for each of the 212 testing patients. The median and
interquartile range (IQR) for the percentage were calcu-
lated.Three passing criteria were used: (1) Δdm = 5 mm,
ΔDm = 5%; (2) Δdm = 5 mm,ΔDm = 10%; and (3) Δdm =
10 mm,ΔDm = 10%,where ΔDm denotes the dose differ-
ence and Δdm denotes the distance to agreement (DTA)
as defined in Ref. 78.

2.5 Quantitative evaluation of 3D
patient attenuation models generated from
ScoutCT-NET (II): Accuracy of radiation
dose prescription in
fluence-field-modulated CT applications

With the 3D patient model generated from ScoutCT-
NET, the expected x-ray attenuation along an arbitrary
ray direction was calculated by forward-projecting the
3D patient model using the Siddon method and the
geometry of a given CT system.79 Based on the atten-
uation information and the “minimal mean FBP noise
variance method,”27,80,81 fluence-field modulation plans
were calculated. The plans were determined by solving
the following constrained optimization problem:

min
nj,𝜃

𝜎2(nj,𝜃), s. t. ntotal =
∑
𝜃

∑
j

nj,𝜃, (3)

where nj,𝜃 represents the expected x-ray number for

detector element j at projection angle 𝜃, 𝜎2 is the mean
noise variance of a reconstructed CT image determined
by nj,𝜃, and ntotal is the total photon number budget. The
well-known Lagrange multiplier method can be used to
find a closed-form solution as shown by Harpen:81

nj,𝜃 =
e

l(j,𝜃)
2

∑
j,𝜃 e

l(j,𝜃)
2

ntotal. (4)

In Equation (4), l(j, 𝜃) denotes the line integral of the
patient’s linear attenuation coefficient along a ray cor-
responding to the jth detector element and a projection
angle of 𝜃. Once the fluence-field modulation plan was
determined by solving Equation (3), it was used to mod-
ulate the x-ray fluence for each ray,which will be virtually
delivered to the patient using the geometry of the Dis-
covery CT750 HD CT scanner (GE Healthcare, Wauke-
sha, WI). The voxelized ground truth “patient” used for
virtual delivery was established based on the true CT
image volume. FBP was applied to the acquired projec-
tion data set to reconstruct CT images resulted from the
virtual fluence-field-modulated CT scans. The radiation
dose distribution map was also provided by the Monte
Carlo method (MC-GPU version 1.3).

Using a similar workflow, we also generated images
and dose distributions for (1) interview-modulated CT
prescribed using the average of the central 100 detec-
tor channels from two-view scouts and the cosine
interpolation method41 and (2) interview-modulated CT
prescribed using online feedback from the 180◦ con-
jugate projection measurements46,47. Specifically, the
“online 180◦”method used a bidimensional moving aver-
age of the projection data and stored the maximum
patient attenuation of each angle over the previous
half rotation for tube current modulation. All simulations
were performed at matched overall patient dose levels.
The results were assessed using noise-only image and
noise standard deviation (STD) maps generated from
50 repeated virtual CT scans. Radiation dose distribu-
tion maps were also compared. The similarity of the
dose distributions between the dose modulation plans
calculated using ScoutCT-NET images and the actual
CT images was assessed using the gamma analysis
method previously described. Two passing criteria were
used: (1) Δdm = 1 mm, ΔDm = 1% and (2) Δdm = 3 mm,
ΔDm = 3%.

2.6 Quantitative evaluation of 3D
patient attenuation model generated from
ScoutCT-NET (III): Accuracy of radiation
dose prescription in organ-specific CT
dose delivery applications

Image data of a female patient were used to demon-
strate the potential application of the ScoutCT-NET-
based 3D patient model in organ-specific CT dose deliv-
ery. The selected organs-of -interest are breast, spinal
canal, and ascending aorta. Each virtual dose deliv-
ery focuses on one of the three organs. As a proof-
of -concept, the objective of the dose prescription was
to obtain the highest image quality within the organ-
of -interest while keeping radiation dose delivered to
other body regions as low as possible. No matter which
organ was chosen, the overall dose delivered to the
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908 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

patient was fixed at 1.6 mGy. For each organ, two dose
modulation plans were prescribed: one based on the
3D patient model generated from ScoutCT-NET; the
other one based on the reference CT images. During
the dose prescription, a region of interest (ROI) was
placed on the organ identified based on the 3D patient
model (or CT images). Next, the tube current for a given
projection view was determined based on the stan-
dard that rays intersecting the ROI have a reference
entrance photon fluence; all other nonintersecting rays
were kept at only 6% of the reference fluence.The qual-
ity of the organ-specific modulation plans was assessed
using noise-only images and noise STD maps gener-
ated from 50 repeated virtual scans. Dose distribution
maps were compared between plans prescribed using
the ScoutCT-NET 3D patient model and those using true
CT images.

2.7 Empirical studies of
generalizability of ScoutCT-NET

One potential challenge with the existing deep learning
studies lies in the fact that there is no theoretical guar-
antee in their generalizability at this time. Therefore, it
is important to extensively test the generalizability of
a trained deep learning model despite the caveat that
there is no general principle to guide this empirical gen-
eralizability test. In this study, empirical generalizability
was tested from two aspects: as shown in Subsection
2.4,Monte Carlo dose distributions have been computed
using the output of the trained ScoutCT-NET over the
entire test patient cohort (212 patients). To further test
how well the network model can be generalized in prac-
tice,qualitative evaluations have also been performed to
determine whether the trained model can be applied to
extremal cases such as pediatric patients and anthropo-
morphic chest phantoms.

3 RESULTS

3.1 3D tomographic patient model
accuracy studies: Qualitative and
quantitative assessment of
scoutCT-NET-based dose distribution
maps

Table 1 summarizes the results of the gamma analysis
for the agreement between the radiation dose distribu-
tions virtually delivered to the ScoutCT-NET 3D patient
model and those to the CT images for all 212 test-
ing subjects. Median values for the percent of voxels
with satisfactory gamma values (𝛾(rm) ≤ 1) across the
212 testing patients were 97.9%, 95.0%, and 92.8% for
the (Δdm = 10 mm, ΔDm = 10%), (Δdm = 5 mm, ΔDm =
10%), and (Δdm = 5 mm, ΔDm = 5%) criteria, respec-

TABLE 1 Percent of voxels with passing gamma criteria
(𝛾(rm) ≤ 1) across the entire testing cohort with 212 patients. DTA,
distance to agreement

DTA/Dose Difference Median IQR Min Max

5 mm/5% 92.8% 89.7–94.2% 78.1% 96.8%

5 mm/10% 95.0% 93.2–96.0% 83.1% 97.6%

10 mm/10% 97.9% 97.4–98.3% 93.3% 99.1%

tively. These results indicate that one could estimate the
radiation dose from a helical chest CT using ScoutCT-
NET images with 95.0% of the patient’s voxels being
within 5 mm and 10% dose difference of the actual CT
scan. This is important because it opens up the pos-
sibility of having accurate patient-specific and organ-
specific x-ray modulation prescriptions.

Figure 3 shows axial and coronal slices through the
ScoutCT-NET 3D attenuation model of a patient from
the testing cohort. A similar image impression between
the ScoutCT-NET patient model and CT images was
achieved with all major anatomical structures and
organs clearly delineated in the ScoutCT-NET patient
model. In addition, the radiation dose distribution from
a virtual helical CT scan delivered to the 3D attenua-
tion model closely matched the radiation dose distribu-
tion calculated based on the CT image volume. For this
subject, the gamma analysis demonstrated that 96.0%
of image voxels had a gamma value ≤ 1 based on the
Δdm = 5 mm DTA and ΔDm = 10% criterion.

3.2 3D tomographic patient model
accuracy studies: Accuracy in radiation
dose prescription in
fluence-field-modulated CT applications

Figure 4 compares x-ray fluence profiles used in the
interview and intraview dose-modulated CT prescribed
and virtually delivered to a patient from the testing
cohort.For each projection angle, the x-ray fluence fields
prescribed based on the ScoutCT-NET 3D attenuation
model closely matched those prescribed based on CT
images.The figure also demonstrates that,even with the
use of the bowtie beam filter, the two-view scout-based
“cosine”interview modulation and the “online 180◦” inter-
view scheme generated less conformal fluence profiles:
for example, for projection views with an overall high
attenuation due to the presence of the spine, the breast
tissue also receive more doses.

Figure 5 shows imaging outcomes from virtual deliv-
eries of four different CT dose modulation schemes,
which includes two-view scout image-based “cosine”
tube current modulation, “online 180◦” tube current
modulation, reference CT image based intraview
fluence-field modulation, and ScoutCT-NET 3D patient
model-based intraview fluence-field modulation. The
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SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION 909

F IGURE 3 (a) Coronal and axial slices through the ScoutCT-NET 3D patient attenuation model and the corresponding CT images. (b)
Comparison of the spatial distribution of absorbed doses from a virtual helical CT scan delivered to the ScoutCET-NET attenuation model with
those to the CT-based attenuation model. 96.0% of the voxels had a gamma value ≤ 1 based on the Δdm = 5 mm distance to agreement and
ΔDm = 10% criterion

F IGURE 4 Comparison of x-ray fluence profiles for different CT dose delivery techniques applied to a test subject. These techniques
include the “cosine” tube current modulation (TCM) combined with a bowtie filter, “online 180◦” TCM with a bowtie filter, intraview fluence-field
modulation prescribed based on the CT image volume, and intraview fluence-field modulation prescribed based on the ScoutCT-NET 3D patient
model. The subfigure (a) on the upper left plots the maximal fluence of each view as a function of projection angle. Other subfigures in (b) show
x-ray fluence profiles for nine representative projection angles. For the “cosine” and the “online 180” methods, the modulation within the fan
beam for each projection view was caused by the bowtie filter, whereas both methods used angular TCMs. Each detector element has a physical
size of 1 mm×1 mm

results were simulated at matched overall absorbed
dose level (1.6 mGy). For each dose delivery scheme,
the reconstructed CT image, noise-only image, noise
STD map, and absorbed dose map are provided.

The noise-only images and STD images show highly
nonuniform noise distributions for both the “cosine” and
the “online 180◦”tube current modulation methods:while
lower noise can be observed in the lungs, much higher
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910 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

F IGURE 5 Comparison of four different dose modulation techniques that were virtually applied to a female patient from the test cohort. The
four techniques are “cosine” tube current modulation prescribed based on two-view 2D scout images (column (1)), “online 180◦” tube current
modulation prescribed based on conjugate projections (column (2)), intraview (fluence-field) modulation prescribed based on the reference CT
images (column (3)), and intraview (fluence-field) modulation prescribed based on the ScoutCT-NET 3D patient model (column (4)). The first
row shows CT images from different dose modulation schemes; the second row shows noise-only images; the third row displays STD maps
calculated from 50 repeated virtual experiments; the fourth row shows radiation dose distributions
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SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION 911

noise can be found in the periphery region of the body
where the bowtie shape mismatched the actual patient
attenuation. In contrast, intraview fluence-field modula-
tion led to much more uniform noise patterns across the
entire body cross-section with significantly fewer noise
streaks. The spatially uniform image quality provided
by fluence-field modulated CT can benefit the detec-
tion of lesions both within and outside the lungs as
well as detection of other incidental findings. As shown
by the third and fourth columns of Figure 5, both the
image quality and dose distributions of the ScoutCT-
NET patient model-based fluence-field modulated CT
matched those prescribed using the true CT volume:
the percent of voxels within the patient with satisfactory
gamma values are 98.4% and 100.0% for the (1) Δdm =
1 mm, ΔDm = 1% and (2) Δdm = 3 mm, ΔDm = 3% cri-
teria, respectively. As a reminder, in reality, the true CT
volume is generally unavailable before the fluence-field
modulated CT is performed. In this case, only ScoutCT-
NET enabled fluence-field modulated CT with uniform
image quality.

3.3 3D tomographic patient model
accuracy studies: Accuracy in radiation
dose prescription in organ-specific dose
prescription CT applications

Figure 6 shows imaging outcomes of organ-specific
CT dose deliveries. Plans of these deliveries were pre-
scribed using the ScoutCT-NET 3D patient attenuation
model, or using the CT volume as the reference stan-
dard. For each virtual dose delivery, one of the following
three organs was chosen: breast, the ascending aorta,
or the spinal canal. For the ScoutCT-NET-based plan,
the ROIs of these organs were drawn based on the
3D patient attenuation model without using any infor-
mation from the CT image volume. As demonstrated by
Row (1) in Figure 6, organ ROIs determined based on
the ScoutCT-NET patient model matched those based
on the CT image volume. Even for glandular tissues in
the breast, its ROI can be easily drawn based on the
ScoutCT-NET patient model. Row (2) and Row (3) in
Figure 6 show the differing image quality between the
ROIs and the rest of the body cross-section. When the
CT dose modulation was prescribed for a given ROI,
noise in that ROI is significantly lower. The noise-only
images in Row (4) and the STD maps in Row (5) fur-
ther confirm the much lower noise magnitude in the
selected ROI of each plan. The radiation dose maps
in Row (6) demonstrate that the dose distribution was
substantially modulated: the organ-of -interest received
higher (but not overly high) dose, whereas the rest of
the patient body received significantly less radiation.The
overall dose was maintained at a constant level of 1.6
mGy. These results demonstrate that ScoutCT-NET 3D
patient model can be used to prescribe organ-specific

dose-modulated CT to enhance the image quality of
specific regions in the patient body while meeting the
radiation dose constraint. The results also confirm that
the ScoutCT-NET patient model generated equivalent
imaging outcomes as the gold-standard patient attenu-
ation model.

3.4 Generalizability test

To demonstrate the generalizability of ScoutCT-NET,the
network was applied not only to adult patients,but also to
a pediatric patient and an anthropomorphic chest phan-
tom.Figure 7 shows multiplanar reformatted images and
volume renderings of 3D attenuation models for the
generalizability-testing image objects: although some
anatomical structures in the lung were not perfectly
reproduced in the ScoutCT-NET attenuation models
due to the low attenuation contrast of these structures
in the planar scout images, the overall image impres-
sion and organ locations of ScoutCT-NET patient mod-
els accurately resemble the corresponding CT images
even for patients with abnormal anatomy in addition to
a 2-year-old pediatric patient.

4 DISCUSSION AND CONCLUSIONS

In this paper, the following key results have been
obtained: (1) It has been shown that the proposed
ScoutCT-NET can be trained in an end-to-end man-
ner to generate 3D patient attenuation models directly
from true clinical two-view scout (i.e., topogram) images.
Once the ScoutCT-NET model is trained, it can be
directly used to reconstruct 3D patient attenuation mod-
els without any prior knowledge of the patient anatomy.
(2) One trained model using a large training data set
with diverse data conditions can be applied to recon-
struct 3D patient tomographic models for patients with
a similar anatomical coverage. (3) The reconstructed 3D
patient attenuation models provided the needed accu-
racy to prescribe radiation dose in both fluence-field
modulated CT and organ-specific dose deliveries. (4) As
the 3D patient model is directly reconstructed from two-
view scout images with a long z-coverage, the recon-
structed patient tomographic model can be readily used
to perform nearly optimal interview tube current mod-
ulations similar to that achieved in online modulation
schemes. In addition, the ScoutCT-NET patient model
does not depend on the CT scan modes employed in
various applications.

Toward reconstructing CT images from one or two pla-
nar x-rays, prior efforts have been made to train deep
neural networks using CT images and their digital for-
ward projections,namely,DRRs.82–84 The majority of the
validations of these networks used DRRs (over which
the developers have precise control and knowledge
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912 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

F IGURE 6 Results from organ-specific CT dose deliveries. The region-of -interest (ROI) is in the breast (a), the ascending aorta (b), or the
spinal canal (c). Row (1) illustrates the locations of the ROI selected based on the ScoutCT-NET 3D patient model or the reference CT image
volume. Row (2) shows the CT image virtually acquired using different organ-specific dose modulation plans and reconstructed using FBP. Row
(3) shows zoomed-in images at three locations for each dose modulation plan. Row (4) shows noise-only images corresponding to the results in
Row (2). Row (5) shows STD maps calculated from 50 repeated virtual deliveries of each dose modulation plan. Row (6) shows radiation dose
distribution of each dose modulation plan. The dose levels are reported within the organ-of -interest and excluding the organ-of -interest. All
modulation plans are conducted with the overall dose delivered to the patient being matched
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SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION 913

F IGURE 7 Coronal and volume rendering of (a) MDCT and (b)
ScoutCT-NET images of an anthropomorphic phantom. The
ScoutCT-NET images reconstructed in (b) served as the basis 3D
patient attenuation model to calculate the optimal intraview dose
modulation plan. (c) shows axial MDCT and ScoutCT-NET images of
a patient with pleural effusion as pointed by the arrow and (d) shows
axial and coronal images of a 2-year-old pediatric patient. These
images show the generalization of the ScoutCT-NET model to
patients with different medical conditions as well as pediatric
patients, despite being trained using images from adult patients

during the forward-projection process) instead of real
x-ray images, not to mention real scout images. To our
knowledge, the only prior work that performed evalua-
tions using real x-ray radiography images,but not actual
scout images, is Ref.65.However,no reference-standard
CT images were provided to validate the “quite plausible”
65 images generated from real x-ray images, and thus,
their values in medical applications remain unclear

due to the potential challenges between DRRs and
scout images. It is worth mentioning that, in reality,
there exist multiple differences between DRRs, x-ray
radiography images, and scout images: for example,
the signal intensity of scout images is scaled differ-
ently from radiography images; both the pixel size and
material of CT detectors are different from the flat
panel detectors used in radiography and the ideal-
ized detector used in generating DRRs; x-ray radio-
graphy images are usually acquired under the wide-
cone geometry with much poorer scatter rejection capa-
bility and stronger x-ray heel effect compared to CTs.
In contrast, scout images are acquired by operating
the MDCT scanner under a scanning-beam acquisi-
tion mode with narrowly collimated beams. The scout
images were stitched from a series of image segments
along the scanning direction. Therefore, as shown in
Figure 2 in Subsection 2.2,a proper preparation/curation
of the scout images during the training phase of
ScoutCT-NET is essential for its initial success. In the
context of 4D CBCT acquisitions, it is also worth men-
tioning that earlier work85 has demonstrated the possi-
bility to estimate the motion field from a single view of
DRR. If the estimated motion field is accurate enough,
one can potentially generate a new image volume that
is consistent with the single-view DRR. However, there
is no study to look into this possibility in a systematic
way yet.

Our study also has some limitations. First, we only
studied the application of ScoutCT-NET for anatomical
regions in the chest. This deliberate choice is partially
due to the fact that the chest anatomy is highly hetero-
geneous and contains important radiosensitive organs
with major differences in density, for example, lung tissue
versus soft tissue.As a result, this anatomic region has a
great potential for intraview dose modulation CT to offer
greater potential for radiation dose reduction. But our
general methodology is not limited to chest scans and, in
principle,one could easily extend and retrain a ScoutCT-
NET network for other anatomical regions. Second, we
have only validated our methodology using images from
a single CT vendor, meaning that our trained ScoutCT-
NET model might not be directly generalizable to other
vendors’ scout image data without further retraining or
network fine-tuning. However, it is important to notice
that the general methodology of ScoutCT-NET does not
make any assumptions about the equipment used to
acquire the scout images and CT images or any ven-
dor proprietary data-processing steps other than the CT
system geometry. Therefore, in principle, the ScoutCT-
NET should be able to be implemented under multiple
manufacturers’ platforms without significant drawbacks.
Finally, an inherent limitation of the presented method-
ology is the fact that both the AP and LAT scout images,
as well as the CT scans used as prior images for net-
work training and data analysis, come from separated
scans acquired at different patient breath holds with
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914 SCOUTCT-NET FOR TWO-VIEW RECONSTRUCTION

CT table translation between scans. This means that
the scout images used as input of the ScoutCT-NET
network might not be perfectly registered to the exact
same anatomy or the target images used during net-
work training regularization. This limitation is somewhat
alleviated by the use of a data consistency term in the
objective function, but at the same time, it prevents us
from drawing even stronger conclusions regarding the
accuracy of the reconstructed images and their poten-
tial diagnostic value. Also, at the current research stage,
neural network architecture design is purely empirical,
and we did not perform any ablation studies or neu-
ral architecture search optimization, as these problems
will often be NP-hard to determine the minimal required
amount of data and the neural network architecture
needed to achieve the desired performance. However, it
is important to notice that we did not observe any case in
our cohort where this limitation had a significant adverse
effect on the practical use of ScoutCT-NET for radiation
dose optimization purposes.

In conclusion, a deep learning-based method has
been developed in this work to generate 3D patient
attenuation models directly from real two-view scout
images without requiring any prior knowledge of the
patients. This method opens a new way for prospec-
tively prescribing dose delivery schemes for fluence-
field modulated and organ-specific dose-modulated CT
toward accomplishing personalized medicine.
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