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Abstract
Background: Conventional methods for estimating the noise power spectrum
(NPS) often necessitate multiple computed tomography (CT) data acquisitions
and are required to satisfy stringent stationarity and ergodicity conditions,which
prove challenging in CT imaging systems.
Purpose: The aim was to revisit the conventional NPS estimation method, lead-
ing to a new framework that estimates local NPS without relying on stationarity
or ergodicity, thus facilitating experimental NPS estimations.
Methods: The scientific foundation of the conventional CT NPS measurement
method, based on the Wiener-Khintchine theorem, was reexamined, emphasiz-
ing the critical conditions of stationarity and ergodicity. This work proposes an
alternative framework, characterized by its independence from stationarity and
ergodicity, and its ability to facilitate local NPS estimations. A spatial average
of local NPS over a Region of Interest (ROI) yields the conventional NPS for
that ROI. The connections and differences between the proposed alternative
method and the conventional method are discussed.Experimental studies were
conducted to validate the new method.
Results: (1) The NPS estimated using the conventional method was demon-
strated to correspond to the spatial average of pointwise NPS from the proposed
NPS estimation framework. (2) The NPS estimated over an ROI with the con-
ventional method was shown to be the sum of the NPS estimated from the
proposed method and a contribution from measurement uncertainty. (3) Local
NPS estimations from the proposed method in this work elucidate the impact of
surrounding image content on local NPS variations.
Conclusion: The NPS estimation method proposed in this work allows for the
estimation of local NPS without relying on stationarity and ergodicity conditions,
offering local NPS estimations with significantly improved precision.
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1 INTRODUCTION

1.1 Notion of signal and noise power

In physics, the instantaneous power absorbed by a load
of resistance R in an electrical circuit is given by |I(t)|2R
or |U(t)|2∕R, where I(t) and U(t) represent the instanta-
neous current and voltage, respectively.1 Consequently,|I(t)|2 and |U(t)|2 represent the instantaneous power
absorbed by a unit resistance in a circuit. In contem-
porary signal processing theory,2 this concept of the
instantaneous power of electrical signals, I(t) and U(t),
has been extended to any arbitrary time-varying con-
tinuous signal S(t). The instantaneous signal power is
therefore defined as the squared modulus of the signal,|S(t)|2.

On the other hand, the current and voltage of an
electrical circuit undergo spontaneous fluctuations, or
noise, due to thermal agitations and intrinsic quantum
fluctuations of the charge carriers.3–6 For the noise
component,5,6 the instantaneous noise power is defined
as |ΔS(t)|2 = |S(t) − E[S(t)]|2,where E[S(t)] denotes the
mathematical expectation of the random variable S(t) at
time t.However,both the signal and noise power defined
in this way are stochastic quantities and thus their exper-
imentally measured values can only be meaningful in
the statistical average sense. This results in the study
of their expected values, denoted as E[S2(t)] for signal
power and E[|ΔS(t)|2] ≡ 𝜎2

S(t) for noise power, respec-
tively. Note that E[|ΔS(t)|2] ≡ 𝜎2

S(t) is nothing but the
variance at time point t.

However, for stochastic physical quantities,7 it is often
more insightful to study how the signal and noise at
one time point, t1, impact their properties at a later
time point, t2 = t1 + Δt. This leads to the study of the
auto-covariance,8 covariance (COV), of the signal S(t)
defined as follows:

COV(t1, t2) =: E([S(t1) − E[S(t1)]][S(t2) − E[S(t2)]]). (1)

Taylor introduced this notion in 1922 to character-
ize the stochastic nature of the time-varying signals.8

A non-vanishing auto-covariance describes the correla-
tion between the noise at one time point and the noise
at a subsequent time point. When Δt → 0, the auto-
covariance mentioned above converges to the variance
at time t1.

The notions of signal power and noise power have
also been generalized to spatially varying signals in
the field of medical imaging.9,10 For a two-dimensional
(2D) image slice or a three-dimensional (3D) image vol-
ume, power is defined as the square of the absolute
value. The total signal and noise energy is given by
the integral across all spatial dimensions, thereby offer-
ing a measure of the total signal power throughout the
entire image slice or image volume. Similarly, the study

of signal and noise power spectral (NPS) analyses has
become an integral component of contemporary med-
ical imaging physics as it delivers the requisite insight
into the imaging system, leading to further optimizations
for improved imaging performance.11–48 An example of
this would be the optimization of computed tomogra-
phy (CT) imaging systems that mitigate noise, thereby
facilitating low radiation dose CT imaging.

1.2 Spectral analysis methods for
signal power and noise power

Instead of evaluating signal and noise power in the
time domain or spatial domain, where data acquisi-
tion typically occurs, Fourier analysis can be applied
to decompose these powers into contributions from
each temporal or spatial frequency, namely, the power
spectrum.This power spectrum is instrumental in under-
standing the influence of noise on the signal and
its frequency-dependent variations. Introducing Fourier
spectrum analysis to functions defined for the covari-
ance function (see Equation (1) or its spatial generaliza-
tions) is mathematically nontrivial. Wiener49 pioneered
this approach with his generalized harmonic analy-
sis, addressing the existence and convergence of the
Fourier transform for relatively simpler deterministic
functions. Khintchine50 later extended this approach to
stochastic processes. While these intricate details are
often overlooked in applied fields, as in this paper, their
significance cannot be understated.

In the following subsection, we briefly review these
two foundational frameworks and their interconnections.
Subsequently, we will introduce our framework for point-
wise NPS analysis, which diverges from the traditional
stationarity and ergodicity conditions of Wiener and
Khintchine’s methodologies.

1.3 Brief review of Wiener’s spectral
analyses for deterministic signals

Wiener49 introduced a generalized harmonic analysis
method to discuss the power spectrum of any determin-
istic time-varying signals. Specifically, for a deterministic
signal S(t), Wiener defined the following autocorrelation
function:

RW
S (t, 𝜏) = 1

2T ∫
+T

−T
dt S(t)S(t + 𝜏) (2)

This function characterizes the correlation between a
segment of the time-varying signal S(t) over a time
window [−T,+T ] and the same signal segment, but
delayed by time 𝜏, that is, S(t + 𝜏). It is crucial to note
that this autocorrelation represents an average of the
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NPS WITHOUT STATIONARITY AND ERGODICITY 4657

quantity S(t)S(t + 𝜏) over the time window [−T,+T ],char-
acterizing the autocorrelation of the signal S(t) up to
a “temporal resolution” of 2T . This explains the intrin-
sic dependence of Wiener’s autocorrelation function on
the time window location, t, and the “resolution” spec-
ified by 2T , making it quasi-local and shift-variant. To
eliminate this shift variance, Wiener imposed the shift-
invariance condition on the signal, such that RW

S (t, 𝜏) =
RW

S (𝜏) to facilitate mathematical discussion.The Wiener
spectrum of the deterministic signal S(t) under this
stationarity condition is given as:

R̃W
S (𝜔) = ∫

+∞

−∞
d𝜏RW

S (𝜏)e−i2𝜋𝜔𝜏. (3)

It is important to note that this conceptual frame-
work was developed for deterministic signals, not for
stochastic signals.

1.4 Brief review of Khintchine’s
spectral analyses for stochastic signals

Following Wiener’s development,Khintchine50 extended
this spectral analysis method to stochastic pro-
cesses, leading to the modern noise power analysis
method.8,50,51 In Khintchine’s framework for stochas-
tic signals, the starting point is the auto-covariance,
COV(t, t + Δt), defined as the mathematical expectation
𝔼[⋅]:

RK
S (t,Δt) =: 𝔼[S(t)S(t + Δt)]. (4)

This mathematical expectation, contrasting with
Wiener’s autocorrelation in Equation (2), averages
over all possible states of the stochastic signal S(t),
making it local to the temporal points t and t + Δt.Similar
to Wiener’s function, Khintchine’s auto-covariance is
inherently shift-variant. In order to advance mathemat-
ical formulations, Khintchine introduced the concept
of stationarity in stochastic processes, analogous to
the principle of shift-invariance in deterministic signals.
Under this condition, if the noise is stationary,7 the
auto-covariance function is solely dependent on the
time shift Δt and is independent of the specific time t,
that is,

RK
S (t,Δt) = RK

S (Δt). (5)

Under this condition, Khintchine naturally adopted
Fourier analysis to define the spectrum of the shift-
invariant auto-covariance:

R̃K
S (𝜔) = ∫

+∞

−∞
d(Δt) RK

S (Δt)e−2𝜋i𝜔Δt . (6)

Up to this point,Wiener’s framework applies to determin-
istic signals, while Khintchine’s framework addresses
stochastic signals, with no direct connection between
the two.

1.5 Connection between Wiener’s
spectral analyses for deterministic signals
and Khintchine’s spectral analyses for
stochastic signals: Wiener-Khintchine
theorem

If we notice that a specific realization of the stochastic
signal S(t) from the stochastic process can be treated
as a deterministic, time-varying signal, then Wiener’s
autocorrelation function and the associated spectral
analysis become applicable to this particular realiza-
tion of the stochastic process. The immediate question,
however, is how to interpret and understand the power
spectrum obtained from this specific realization of the
stochastic process. It might initially seem that the tem-
poral average in Wiener’s framework could be achieved
by averaging the local spectrum, as defined in Khint-
chine’s framework, over the time window [−T,+T ]. This
idea is certainly intriguing, but it raises two fundamen-
tal questions: (1) Under the stationarity condition for
the stochastic process and shift-invariance for the spe-
cific realization of the stochastic process, is there any

relationship between the Fourier transform R̃K
S (𝜔) as

per Khintchine and the Fourier transform R̃W
S (𝜔), as

defined by Wiener? (2) In the context of Khintchine’s
framework,where does the statistical ensemble average
(indicated by the mathematical expectation) fit if there
is indeed a connection between these two distinctively
defined spectra? Answers to these questions are highly
non-trivial. As it turned out that there is indeed a pro-
found link between the time-average integral in Wiener’s
autocorrelation definition in Equation (2) and the ensem-
ble average of the stochastic quantities in Khintchine’s
framework.This connection,however, is contingent upon
an additional condition of ergodicity being imposed on
the stochastic processes.

Under the ergodicity condition, all possible stochas-
tic states of the stochastic variable will be accessed
as the time window width T goes to infinity, and thus
the time average in Wiener’s autocorrelation definition
becomes equivalent to the ensemble average over all
possible states of Khintchine’s stochastic signals. As a
result,under both stationarity and ergodicity,one obtains
this bizarre yet profound connection:

R̃K
S (𝜔) = R̃W

S (𝜔), (7)

which is the central statement of the so-called Wiener-
Khintchine theorem.
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4658 NPS WITHOUT STATIONARITY AND ERGODICITY

F IGURE 1 Connections between Wiener’s signal power spectral analysis framework for deterministic signals and Khintchine’s framework
for stochastic signals. Both frameworks impose their corresponding stationarity, that is, shift-invariance, conditions to facilitate discussion. The
profound connection between the two frameworks was established through the limit of T → ∞ in Wiener’s framework and under the ergodicity
condition of the stochastic process in Khintchine’s framework. In contrast, the proposed framework in this work is also presented in this figure to
highlight that neither stationarity nor ergodicity conditions are introduced in the proposed framework.

Note that, in the limit as T → ∞ and under the
condition of shift invariance, it is straightforward to
demonstrate the following result:

R̃W
S (𝜔) = ∫

+∞

−∞
d𝜏RW

S (𝜏)e−i2𝜋𝜔𝜏,

= lim
T→∞

||||| 1
2T ∫

T

−T
dt S(t)e−i2𝜋𝜔t

|||||
2

,

= ||S̃(𝜔)||2. (8)

When this result is combined with the Wiener-Khintchine
theorem, as indicated in Equation (7), one concludes
that Khintchine’s power spectrum of the stochastic sig-
nal, defined as the Fourier transform of the ensemble
average of the stochastic quantity S(t)S(t + 𝜏), can be
obtained by taking the infinite time window limit (i.e.,
T → ∞) of the Fourier transform of a single realization
of the stochastic signal S(t) over the finite window 2T .

When the stochastic signal S(t) is subtracted by its
corresponding expected values, 𝔼[S(t)], the concept of
auto-correlation changes to the corresponding auto-
covariance,as defined in Equation (1).Consequently, the
signal spectra transform into the corresponding NPS.
For clarity, let’s summarize the results of the Wiener-
Khintchine theorem (i.e., Equations (7) and (8)) when
applied to the auto-covariance as follows:Under station-
arity and ergodicity conditions, the Wiener-Khintchine
theorem leads to the following NPS estimation
method:

ÑPSK
S (𝜔) = ∫

+∞

−∞
d𝜏COVS(t, t + 𝜏)e−i2𝜋𝜔𝜏,

= lim
T→∞

||||| 1
2T ∫

T

−T
dt ΔS(t)e−i2𝜋𝜔t

|||||
2

,

= |||Δ̃S(𝜔)|||2. (9)

that is, the NPS can be obtained by taking the squared
modulus of the Fourier transform of the “noise” asso-
ciated with the measured signal, denoted as ΔS(t) =
S(t) − 𝔼[S(t)], over a 2T-temporal window. The con-
nections between Wiener’s power spectral analysis
framework for deterministic signals and Khintchine’s
NPS framework are summarized in Figure 1, contrast-
ing the proposed local NPS analysis method discussed
in the next section.

1.6 Conventional NPS estimation
method of x-ray CT image slices
recommended by ICRU

To analyze the NPS of a 2D image slice, the method
based on the Wiener-Khintchine theorem for NPS mea-
surement, as dictated by Equation (9), is generalized
from one temporal domain to spatial domain. This
generalization resulted in the NPS estimation method
recommended by the International Commission on
Radiation Units and Measurements (ICRU) for x-ray CT
imaging. The method involves first applying the Fourier
transform to the estimated noise-only image, and then
computing the squared modulus of the Fourier trans-
form to estimate the NPS for a chosen spatial Region
Of Interest (ROI)32,33:

N̂PS
ICRU(

k⃗
)
= 1

AK

K∑
j=1

||||FT2D[ΔÎ(j)(x⃗)]
||||
2

, (10)
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NPS WITHOUT STATIONARITY AND ERGODICITY 4659

where A represents the area of the chosen ROI. In
the above ICRU-recommended NPS estimation method,
a total of K repeated data acquisitions are assumed.
The purposes of using K repeated acquisitions in the
above ICRU-recommended NPS estimation method are
twofold: (1) The sample mean over these K acquisi-
tions can be taken and then used as the estimate of
the needed mathematical expectation of the signal, that
is, image 𝔼[I(x⃗)], since this is needed as indicated in
Equation (9) to estimate noise ΔI(x⃗) = I(x⃗) − 𝔼[I(x⃗)]. (2)
An arithmetic average over the obtained NPS from each
acquisition, that is, 1

K

∑K
j=1 | ⋅ |2, is taken to suppress the

excessive measurement uncertainty from a single acqui-
sition.This ICRU recommended method is referred to as
the “conventional method” in the remainder of the paper.
It is important to emphasize that this method is based
on the Wiener-Khintchine theorem, and thus one needs
to impose some form of stationarity and also ergodicity
to justify its applicability in practice.

2 PROPOSED LOCAL NPS WITHOUT
STATIONARITY AND ERGODICITY
CONDITIONS

2.1 Proposed definition of local NPS
beyond stationarity and ergodicity
constraints

In this work, we heuristically introduce a windowed
Fourier transform for Khintchine’s covariance of spa-
tially varying signals, specifically for CT images I(x⃗),
without delving into potential mathematical subtleties
such as the existence and convergence of the Fourier
transforms. The windowed Fourier transform is defined
as follows:

CII(x⃗1, x⃗2) := 𝔼
(
[I(x⃗1) − 𝔼[I(x⃗1)]][I(x⃗2) − 𝔼[I(x⃗2)]]

)
, (11)

C̃II(k⃗, x⃗1) = ∫Δx⃗∈ROI
d(Δx⃗) CII(x⃗1, x⃗1 + Δx⃗)e−2𝜋ik⃗⋅Δx⃗ .

(12)

Here, x⃗ denotes a spatial point and Δx⃗ = x⃗2 − x⃗1 repre-
sents the distance between two spatial locations. The
term ROI refers to the ROI of the image function in
the spatial domain, and k⃗ denotes the spatial frequency
vector in a 2D image slice or 3D image volume of I(x⃗).

Compared with the NPS measurement method rec-
ommended by the ICRU, our proposed framework
exhibits two key differences. First, we employ the win-
dowed partial Fourier transform (also known as the
Wigner-Ville transform in physics and signal process-
ing),defined over an ROI centered around the pivot pixel
labeled by x⃗1. Unlike in Khintchine’s work, we do not
impose stationarity conditions. Second, we define the

local NPS at location x⃗1 as this partial Fourier transform
taken over an ROI:

NPS(k⃗, x⃗1) := C̃II(k⃗, x⃗1). (13)

The key question is how to estimate this local NPS
from experimental data. This task essentially involves
the experimental estimation of the covariance CII(x⃗1, x⃗2)
as outlined in Equation (11). There are two general
strategies to achieve this: one is to estimate the covari-
ance in the reconstructed image domain (referred to
as the image-domain method), and the other is to
reconstruct the covariance from the estimated noise
variance of the projection data (referred to as the
projection-domain method). As will be shown in the next
subsection, the first strategy is used in the NPS estima-
tion method recommended by the ICRU, which leads to
the spatially averaged NPS over an ROI. In contrast, the
second strategy is adopted in this paper to enable local
NPS estimations.

2.2 Projection-domain method to
estimate covariance CII(x⃗1, x⃗2)

The noise in the reconstructed CT images is derived
from the noise present in the acquired line integral
sinogram projection data. As shown by Wunderlich and
Noo23 and Zhang et al.,52 due to the linearity of the fil-
tered backprojection (FBP) reconstruction method, the
digitized version of the FBP reconstruction can be
expressed as follows:

Î(x⃗) =
∑
d,v

𝜆d,v(x⃗)p̂d,v . (14)

Here, I(x⃗) represents the image value at location x⃗, p̂d,v =
ln

N̄0;(d,v)

N(d,v)
denotes the estimated line integral projection

data from a single acquisition. In this expression, the
photon counts,N(d,v), follow the Poisson distribution,and
v and d correspond to it corresponds to view angle index
and detector index, respectively, in a single CT data
acquisition. On the other hand, N̄0;(d,v) represents the
averaged photon flux from the air scan and is therefore
a deterministic quantity. Î(x⃗) is a random variable and
its statistical properties are determined by the statistical
properties of the estimated projection data p̂d,v . To facil-
itate the discussion, we further simplify Equation (14) by
using a single index m:

Î(x⃗) =
M∑

m=1

𝜆m(x⃗)p̂m. (15)

Here M = D × V represents the total number of mea-
sured data points in the sinogram. Correspondingly, the
difference image ΔI(x⃗) = Î(x⃗) − ̄̂I(x⃗) can be expressed in
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4660 NPS WITHOUT STATIONARITY AND ERGODICITY

terms of the difference in sinogram data as follows:

ΔÎ(x⃗) =
M∑

m=1

𝜆m(x⃗)Δp̂m. (16)

Therefore, it is straightforward to show the covari-
ance CII(x⃗i , x⃗j) for the image noise ΔÎ(x⃗) at two spatial
locations x⃗i and x⃗j are given as below:

CII(x⃗i , x⃗j) = 𝔼[ΔÎ(x⃗i)ΔÎ(x⃗j)],

=
M∑

m,m′=1

𝜆m(x⃗i)𝜆m′(x⃗j)𝔼[Δp̂mΔp̂m′ ],

=
M∑

m,m′=1

𝜆m(x⃗i)𝜆m′(x⃗j)COV(p̂m, p̂m′ ). (17)

It is noteworthy to mention that the measured line
integral projection data at distinct detector elements
and various view angles, representing different indices
m and m′, are statistically independent as long as
the detector cross-talk effect can be neglected. Under
this condition,we have COV(p̂m, p̂m′ ) = 𝛿mm′var(p̂m) and
thus the above equation can be further simplified as
follows:

CII(x⃗i , x⃗j) =
M∑

m=1

𝜆m(x⃗i)𝜆m(x⃗j)var(p̂m). (18)

Note that it is the mathematical expectations are taken in
the above formula to establish the relationship between
the covariance of the CT image noise at two spatial loca-
tions and the covariance or variance of the projection
data9,23 at different view angles and detector elements
labeled by a condensed index m.

In practice, one will have to estimate these quanti-
ties from experimental measurements. In this regard,
the above relationships naturally gives us a method to
estimate noise covariance and variance from projection
data as follows:

ĈII
(
x⃗i ; x⃗j

)
=

M∑
m,m′=1

𝜆m(x⃗i)𝜆m′(x⃗j)ĈOV(p̂m, p̂m′ ),

=
M∑

m=1

𝜆m(x⃗i)𝜆m(x⃗j)v̂ar(p̂m) (19)

When K repeated data acquisitions are performed, one
can estimate the covariance of projection data from the
measured projection data as follows:

ĈOV(p̂m, p̂m′ ) = 1
K

K∑
𝓁=1

Δp̂(𝓁)
m Δp̂(𝓁)

m′ = 𝛿mm′ v̂ar(p̂m). (20)

Here, the superscript (⋅)(𝓁)(𝓁 = 1,… , K) denotes the
result from the 𝓁-th independent CT data acquisition
and ĈOV(p̂m, p̂m′ ) is the estimated covariance of the
projection data represents the estimated variance of
the line integral projection data p̂m from K repeated
measurements:

v̂ar(p̂m) = 1
K

K∑
𝓁=1

[
Δp̂(𝓁)

m

]2
. (21)

To summarize, we have the following projection-domain
local NPS measurement method:

N̂PS(k⃗, x⃗1) = ∫Δx⃗∈ROI
d(Δx⃗) ĈII(x⃗1, x⃗1 + Δx⃗)e−2𝜋ik⃗⋅Δx⃗ .

(22)

In other words, as long as the covariance is esti-
mated from the measured projection data using Equa-
tions (19)–(21), the local NPS can be readily estimated
using the above windowed Fourier transform.

2.3 Image-domain method to estimate
covariance CII(x⃗1, x⃗2)

To experimentally measure the NPS, whether for time-
varying signals or spatially-varying signals, the crux is to
estimate the auto-covariance in the temporal domain,as
demonstrated in Equation (1), or in the spatial domain,
as presented in Equation (11). When data acquisitions
are repeated K times under identical conditions, the
mathematical expectations are approximated from the
corresponding sample averages as follows32,33:

E[I(x⃗1)] ≈ Ī(x⃗1) = 1
K

K∑
j=1

I(j)(x⃗1); (23)

CII(x⃗1, x⃗2) ≈ ĈII(x⃗1, x⃗2) = 1
K

K∑
j=1

ΔI(j)(x⃗1)ΔI(j)(x⃗2), (24)

where ΔI(j)(x⃗) = I(j)(x⃗) − Ī(x⃗). Here and throughout the
paper, the approximated values for the mathematical
expectations derived from measured experimental sam-
ples are denoted as (̂⋅), that is, by a wide hat above
the corresponding quantities. Similar to the projection-
domain method shown in Equation (22),upon taking the
Fourier transform concerning the variable Δx⃗, the corre-
sponding local NPS, centered around the pivotal point
x⃗1, can be inferred from the experimental samples as
follows:

N̂PS(k⃗, x⃗1) = ĈII(k⃗, x⃗1)

= ∫Δx⃗∈ROI
d(Δx⃗)ĈII(x⃗1, x⃗1 + Δx⃗)e−2𝜋ik⃗⋅Δx⃗ .

(25)
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NPS WITHOUT STATIONARITY AND ERGODICITY 4661

When the image-domain estimation of the covariance
ĈII(x⃗1, x⃗2) shown in Equation (24) is combined with
the above definition of local NPS, some straightforward
algebraic manipulations yield the following result:

N̂PS(k⃗, x⃗1) = ∫Δx⃗∈ROI
d(Δx⃗) ĈII(x⃗1, x⃗1 + Δx⃗)e−2𝜋ik⃗⋅Δx⃗ ,

= 1
K

K∑
j=1

ΔI(j)(x⃗1)e2𝜋ik⃗⋅Δx⃗1

× ∫x⃗2∈ROI
d(x⃗2)ΔI(j)(x⃗2)e−2𝜋ik⃗⋅x⃗2 ,

= 1
K

K∑
j=1

ΔI(j)(x⃗1)e2𝜋ik⃗⋅Δx⃗1 DFT[ΔI(j)(x⃗2)].

(26)

Unfortunately, this does not provide a straightforward
method to estimate the desired local NPS, as pro-
posed in the projection-domain method in this paper.
However, as shown in the next subsection, when a
spatial average over the anchor point location x⃗1
is performed, the x⃗1-dependent factors in the above
equation become another DFT of the “noise-only”
image. As a result, one naturally arrives at the ICRU
recommended NPS measurement method shown in
Equation (10).

2.4 Relationship between the ICRU
method and the proposed local NPS
estimation method defined in
Equation (25)

In this subsection, we will show that the conventional
NPS measurement method depicted in Equation (10),
is a spatial average of the point-wise NPS defined in
Equation (25) over an ROI with an area of A.

Utilizing the basic definition of Fourier transform,
Equation (10) can be expressed as follows:

N̂PS
ICRU(

k⃗
)
= 1

AK

K∑
k=1

||||FT2D[ΔÎ(k)(x⃗)]
||||
2

= 1
AK

K∑
k=1

[
FT2D[ΔÎ(k)(x⃗)]

]∗[
FT2D[ΔÎ(k)(x⃗)]

]

= 1
AK

K∑
k=1

[
∫x⃗i∈ROI

dx⃗i ei2𝜋k⃗⋅x⃗iΔÎ(k)(x⃗i)

]

×

[
∫x⃗j∈ROI

dx⃗j e−i2𝜋k⃗⋅x⃗jΔÎ(k)(x⃗j)

]

= 1
A ∫x⃗i∈ROI

dx⃗i ei2𝜋k⃗⋅x⃗i ∫x⃗j∈ROI
dx⃗j e−i2𝜋k⃗⋅x⃗j

×

[
1
K

K∑
k=1

ΔÎ(k)(x⃗i)ΔÎ(k)(x⃗j)

]
. (27)

Observe that the term in the square bracket in the
last line is essentially the experimental estimation of
image covariance ĈII between two points x⃗i and x⃗j)
as demonstrated in Equation (24). Consequently, the
aforementioned equation can be reformulated into the
following form:

N̂PS
ICRU(

k⃗
)
= 1

A ∫x⃗i∈ROI
dx⃗i

× ∫Δx⃗∈ROI
d(Δx⃗)e−i2𝜋k⃗⋅Δx⃗ĈII

(
x⃗i ; x⃗i + Δx⃗

)
= 1

A ∫x⃗i∈ROI
dx⃗i N̂PS

(
k⃗, x⃗i

)
, (28)

where point-wise estimate of the NPS, that is,

N̂PS
(

k⃗, x⃗i

)
, is defined in Equation (25). Clearly, the

result above establishes that the conventional NPS
estimation method recommended by ICRU is simply the
spatial average of the point-wise estimation proposed

in this work, N̂PS
(

k⃗, x⃗i

)
, over the designated ROI.

2.5 Caveats in the ICRU-recommended
image domain NPS measurement method

Based on Equation (28), the core concept of the ICRU-
recommended NPS measurement approach,given mul-
tiple CT acquisitions, entails taking the spatial average
of the point-wise NPS over a designated ROI. The esti-
mated point-wise NPS from multiple CT acquisitions,

denoted as N̂PS
(

k⃗, x⃗i

)
, is the Fourier transform of the

estimated noise covariance, ĈII
(
x⃗i ; x⃗j

)
, which is esti-

mated from the reconstructed images using data from
multiple CT acquisitions as follows:

ĈII
(
x⃗i ; x⃗j

)
= 1

K

K∑
k=1

ΔÎ(k)(x⃗i)ΔÎ(k)(x⃗j)

=
M∑

m,m′=1

𝜆m(x⃗i)𝜆m′(x⃗j)ĈOV(p̂m, p̂m′ ),

=
M∑

m=1

𝜆m(x⃗i)𝜆m(x⃗j)v̂ar(p̂m)

+
M∑

m≠m′=1

𝜆m(x⃗i)𝜆m′(x⃗j)Ômm′ . (29)
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4662 NPS WITHOUT STATIONARITY AND ERGODICITY

Here v̂ar(p̂m) is the variance of the projection data
defined in Equation (21) and the term Ômm′(m ≠ m′)
stands for the off -diagonal contribution:

Ômm′ = 1
K

K∑
𝓁=1

Δp̂(𝓁)
m Δp̂(𝓁)

m′ . (30)

Therefore, when it is compared with the projection
domain estimation method shown in Equation (19), the
image domain estimation method adopted by the ICRU
recommendation included the off -diagonal contributions
Ômm′ . It is the inclusion of this term in the estimation
method that makes the estimated NPS with higher level
of uncertainty as it is shown by the statistical properties
of this off -diagonal term.

It is noteworthy to mention that the measured line
integral projection data at distinct detector elements
and various view angles, representing different indices
m and m′, are statistically independent as long as the
detector cross-talk effect can be neglected. This leads
us to the ensuing uncomplicated statistical attribute for
the off -diagonal term Ômm′(m ≠ m′):

E[Ômm′ ] = 1
K

K∑
𝓁=1

E
[
Δp̂(𝓁)

m Δp̂(𝓁)
m′

]

= 1
K

K∑
𝓁=1

E
[
Δp̂(𝓁)

m

]
E
[
Δp̂(𝓁)

m′

]
= 0. (31)

In this equation, the fact E
[
Δp̂(𝓁)

m

] ≡ 0 and statistical

independence are employed. Similarly, the zero-mean
result in the above equation is combined with the statisti-
cal independence for different data acquisitions denoted
by the index 𝓁 and different detector element and view
angle index m to obtain the variance of Ômm′ as follows:

var[Ômm′ ] = E

[
1
K

K∑
𝓁=1

Δp̂(𝓁)
m Δp̂(𝓁)

m′

]2

= 1
K

var[p̂m]var[p̂m′ ].

(32)

A detailed derivation of the above result is presented in
the Appendix.

2.6 Summary: ICRU recommended
method versus the proposed local NPS
estimation method

In this work, we studied the relationship between the
conventional NPS measurement method and the pro-
posed local NPS measurement method. This work
demonstrates that these two different methods become
equivalent as long as the NPS is studied over an ROI
selected in the conventional NPS definition.However,the
new method enables local NPS measurement without

the need for either stationarity or ergodicity conditions,
which are often difficult to satisfy in practice. The key
points are summarized as follows:

∙ First, the proposed method allows for local NPS
measurement, starting with the estimation of the
covariance ĈII(x⃗i , x⃗j), using the estimated variance of
the projection data, that is, v̂ar(p̂m). In contrast, the
conventional NPS measurement method begins with
the reconstructed image from each CT data acquisi-
tion,and these images are then used to estimate NPS
by imposing additional assumptions of stationarity
and ergodicity on the involved stochastic processes.

∙ Second, the conventional NPS estimation represents
a spatially averaged local NPS, N̂PS(k⃗, x⃗i), over the
entire selected ROI.

∙ Third, the conventional NPS measurement method
shown in Equation (10) includes a term dictated exclu-
sively by the variance of projection data v̂ar(p̂m), and
an additional zero-mean uncertainty term as shown
in Equation (29). It is this zero-mean uncertainty term
that hinders a precise estimate of NPS when the num-
ber of acquisitions, K, is small, as it contributes only
measurement noise.

3 EXPERIMENTAL VALIDATION
METHODS

In this section, experimental measurements were con-
ducted to validate the key findings of this paper, as
summarized in the three bullet points in Section 2.6.
To ensure a fair comparison of the NPS measurement
results from the proposed local NPS projection-domain
measurement methods and the conventional ICRU-
adopted image-domain method, the exact same set of
repeated photon counting detector PCD-CT projection
data was used.

To avoid overlap, the data acquisition system and sys-
tem geometry are identical to those presented in our
co-pending paper.52 For completion and clarity, here is
a brief summary of the phantom and data acquisition
parameters used in this work.

3.1 Data acquisition parameters to
characterize detector temporal and spatial
correlations

Given the assumption that temporal and spatial corre-
lation effects are negligible in the proposed local NPS
measurement methods, it is imperative to validate this
assumption within the context of the photon counting
detector utilized in our validation studies. Experimen-
tal data were acquired through air scans under specific
conditions: a tube voltage of 120 kV and a current of
240 mAs, identical to those used in local NPS mea-
surements. A sequence of 1210 repeated frames was
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NPS WITHOUT STATIONARITY AND ERGODICITY 4663

captured consecutively at a rate of 0.1 s per frame
(equivalent to 10 frames per second), to compile an
ensemble of spatial and temporal dataset. Raw count
data were recorded at a native resolution of 100 μm.The
detector operated in anti-charge sharing mode with a
low energy threshold of 23 keV to reject electronic noise.

Temporal and spatial correlation analyses (elaborated
in subsequent subsections) were conducted on ROI
encompassing 97 × 49 pixels, with each detector pixel
measuring 0.1 mm × 0.1 mm. The 1210 frames of air
scan data provided a time series with 1210 temporal
data points for temporal correlation analysis,and equally
1210 samples for spatial correlation assessment.

3.2 Temporal auto-correlations

To evaluate temporal lag behavior of the detector, the
auto-correlation function (ACF) was analyzed across the
temporal dimension for each detector element, utilizing
the acquired data. This involved calculating the sample
ACF, defined as:

R(𝜏, x⃗) = 1
T

T−𝜏∑
t=1

(
N(t, x⃗) − N(x⃗)

𝜎N(x⃗)

)(
N(t + 𝜏, x⃗) − N(x⃗)

𝜎N(x⃗)

)
,

(33)

where x⃗ denotes a spatial location on the 2D detec-
tor plane, t denotes the image frame index and T =
1210 denotes the total frames of acquired data, N(t, x⃗)
denotes the output counts of a pixel at x⃗ from the t-th
image frame, N(x⃗) is computed by taking the average
of N(t, x⃗) along the t-dimension, and 𝜎2

N(x⃗) represents
the variance of N(t, x⃗) along the t-dimension. The
mean, R(𝜏), and standard deviation of these tempo-
ral auto-correlations were computed across all detector
elements labeled by x⃗ over the entire detector to
characterize the lag behavior of the detector.

3.3 Spatial auto-correlations

The assessment of spatial auto-correlations between
different detector elements was conducted by evaluat-
ing the noise spatial correlation of our photon counting
detector. This evaluation was accomplished by calculat-
ing the Pearson correlation coefficient, r , between two
spatial locations on the 2D detector plane, as outlined
below:

r(x⃗0, x⃗0 + Δx⃗) = 1
M − 1

M∑
i=1

(
Ni(x⃗0) − N(x⃗0)

𝜎N(x⃗0)

)

×

(
Ni(x⃗0 + Δx⃗) − n(x⃗0 + Δx⃗)

𝜎N(x⃗0 + Δx⃗)

)
, (34)

F IGURE 2 Temporal correlations across the detector panel for
the first 40 shifted time points 𝜏 = 0, 1,… , 40 are presented. The time
interval between successive points is determined by the detector’s
frame rate, which is equivalent to 100 ms for this study. The mean
(denoted by a circle) and the 95% confidence interval are presented
for each sampled 𝜏 value.

where x⃗0 and x⃗0 + Δx⃗ denote two spatial locations on the
detector plane. Here, x⃗0 is considered an anchor point
for the correlation coefficient calculation. Ni(x⃗0) repre-
sents the recorded counts of the pixel at x⃗0 from the
ith repeated measurement in the ensemble with a total
of M = 1210 repeated time frames, N(x⃗0) is the sample
mean of Ni(x⃗0),and 𝜎N(x⃗0) denotes the sample variance
of Ni(x⃗0).

3.4 Phantoms and data acquisition
parameters for local NPS measurements

To showcase the rich spatial variations of the local NPS
measured using the proposed method in this paper,a rel-
atively simple 16 cm-diameter uniform acrylic phantom
was scanned using our benchtop PCD-CT system.Each
photon counting CT scan was conducted at 120 kV and
240 mAs. The phantom underwent 100 repeated scans
to implement the multi-acquisition NPS measurement
method. The center of the acrylic phantom was pre-
cisely aligned with the iso-center of the photon counting
CT system.

4 EXPERIMENTAL RESULTS

This section showcases the experimental results to sub-
stantiate the theoretical insights discussed in this paper.

4.1 Spatial and temporal correlations
of detector counts

Figure 2 presents the correlation of detector outputs
across different time frames within our experimental
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4664 NPS WITHOUT STATIONARITY AND ERGODICITY

F IGURE 3 Spatial correlations of detector readout counts across five distinct ROIs. Data from these ROIs are sampled for presentation.
Additionally, quantitative correlation values for these ROIs are presented, encompassing the 24 neighboring pixels centered around the pivot
point. ROI, region of interest.

F IGURE 4 Covariance ĈII
(
x⃗i , x⃗j

)
was measured using the proposed projection-domain measurement method. ROIs of two different sizes

(9 × 9 and 65 × 65) were centered at three points labeled on the image (locations 1, 2, and 3). ROI, region of interest.

data acquisitions. The correlation function R(𝜏) between
different time frames, that is, 𝜏 ≠ 0, exhibits a zero
mean. This observation suggests that the lag effect
is negligible at a data acquisition rate of 10 frames
per second.

Figure 3 presents the spatial correlation coeffi-
cients of detector outputs for five selected ROIs on
the detector panel. The results indicate that spa-
tial correlations among detector elements are minimal
when the anti-charge sharing mode is enabled in our
study.

4.2 Covariance ĈII
(
x⃗i; x⃗j

)
using the

proposed projection-domain method

Covariance ĈII
(
x⃗i , x⃗j

)
provides a quantitative character-

ization of the noise correlation between two locations x⃗i
and x⃗j . The spatial range of this correlation effect pro-
vides a good indication of the ROI sizes that enable
the windowed Fourier transform to generate local NPS
without significant spectral leakage. Figure 4 presents
the measured ĈII

(
x⃗i , x⃗j

)
with x⃗i anchored at three
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NPS WITHOUT STATIONARITY AND ERGODICITY 4665

F IGURE 5 The conventional NPS measurement results (labeled as “Conventional”) of the uniform acrylic phantom at five different ROIs
with a pixel size of 64 × 64 are shown in the first column. The contribution from additional uncertainty (labeled as “Off -diagonal”) is displayed in
the second column. The contribution from the diagonal term is shown in the third column (labeled as “Diagonal”). NPS, noise power spectrum;
ROI, region of interest.

different locations labeled on the reconstructed image
and with two ROI sizes: 9 × 9 and 65 × 65. As shown
in the results, the noise correlation estimated using the
proposed projection-domain method is short-ranged.
This indicates that one can accurately estimate local
NPS by taking a DFT over a relatively small ROI, larger
than 9 × 9.

4.3 Conventional image-domain NPS
measurement results: Diagonal
contribution and additional uncertainty
(off-diagonal) contribution

The conventional NPS measurement method, as shown
by Equation (10), was used to measure the NPS at five
different ROIs (four at the periphery and one at the cen-
ter of the reconstructed image) in the uniform acrylic
phantom. Each ROI has 64 × 64 image pixels. Results
are presented in Figure 5. The NPS results in the first
column are generated from the reconstructed images

using the standard ICRU prescription (Equation (10)).
Results in the second and third columns are the two con-
tributing terms from Equation (29) are considered: the
“Off -diagonal” term arises from the term Ômm′ (Equa-
tion (30)) while the proposed method from the “Diagonal”
contribution is generated from the estimated variance.

4.4 Conventional Image-Domain NPS
measurement: Averaged results of the
proposed local NPS projection-domain
measurement method

One of the central results in this work is presented in
Equation (28). It elucidates the relationship between
the proposed projection-domain local NPS measure-
ment method and the conventional image-domain NPS
measurement method: The result of the conventional
NPS measurement is the spatial average of the pro-
posed local NPS measurement method over the ROI.
This relationship is illustrated in Figure 6: The result in
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4666 NPS WITHOUT STATIONARITY AND ERGODICITY

F IGURE 6 A detailed view of the NPS images contributed by the diagonal term in the conventional multi-acquisition approach is obtained
by measuring at each pixel (point-wise) inside an 8 × 8 ROI at the iso-center. The NPS images obtained at each pixel within the ROI are then
spatially averaged to form the “donut-shaped” ROI NPS. NPS, noise power spectrum; ROI, region of interest.

F IGURE 7 The ROI NPS images contributed by the diagonal term in the conventional multi-acquisition approach are obtained by taking the
spatial average over three sub-ROIs (each with 8 × 8 pixels) within a larger ROI with 64 × 64 pixels. NPS, noise power spectrum; ROI, region of
interest.

this figure displays the spatial average of the proposed
local NPS measurement results over an ROI spanning
8 × 8 image pixels, generating the corresponding con-
ventional NPS measurement of the diagonal term. (The
results of the off -diagonal term will be presented in next
subsection.) For simplicity, only the results for the ROI
located at the center are presented.

The results in Figure 6 also indicate that for the
chosen ROI of 64 image pixels, the proposed local
NPS does not immediately reveal the well-known
“donut-shape” NPS structure, which is almost circu-
larly symmetric. Rather, the local NPS results reveal
a rich NPS structure within the chosen ROI of 64
image pixels. Furthermore, the measured local NPS
structures display a form of discrete rotational sym-
metry, with different rotation angles from the center to
the periphery of the selected ROI. Once the spatial
average is performed, the expected circular symme-

try of the NPS structure emerges from the average of
these local NPS measurements with discrete rotational
symmetries.

Similar results are presented in Figure 7 for a larger
ROI of 64 × 64 image pixels, illustrating the spatial aver-
age outcomes of these point-wise NPS measurements.
The spatial averages are computed over three subsets
drawn from 4096 local NPS results.

4.5 Conventional NPS measurement
results from multiple data acquisitions:
Reducing uncertainty by increasing the
number of data acquisitions

Figure 8 exhibits the variation in the off -diagonal term
in the conventional NPS measurement method that
employs multiple CT data acquisitions.
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NPS WITHOUT STATIONARITY AND ERGODICITY 4667

F IGURE 8 The variation of the uncertainty (“Off -diagonal”) contribution in the conventional multi-acquisition NPS measurement method is
analyzed with respect to the number of experimental collections (K) and the selected ROI size. The off -diagonal images exhibit noise-like
characteristics, and the variation increases when fewer samples are acquired (in the row direction). Additionally, the off -diagonal images show
similar variations across different ROI sizes due to the lower frequency resolution of the NPS image, which compensates for the smaller ROI
size. NPS, noise power spectrum; ROI, regions of interest.

Within each row, at a fixed number of data acqui-
sitions, the introduced off -diagonal term in the con-
ventional NPS measurement displays a more spatially
uniform noise distribution. In contrast, within each col-
umn, at a selected ROI size, the amplitude of the
off -diagonal contribution added to the NPS measure-
ment diminishes as the repetition number of data
acquisitions increases.

The reduction in the added uncertainty of the
off -diagonal term within the conventional NPS mea-
surement method is quantified in Figure 9. It depicts
a square root reduction correlated with the number
of acquisitions.

4.6 Root-causes of the rich structures
in measured local NPS

The rich NPS structures presented in Figure 6 for a small
8 × 8 ROI and in Figure 6 for a larger ROI size of 64 ×
64 are the new results of the proposed local NPS mea-
surement method. The presence of these rich spatial
variations in local NPS within the uniform acrylic phan-
tom is rather unexpected. It turns out that the rich spatial

structures of these local NPS are related to the interpo-
lation weighting function w(𝜃; x⃗), as explained in details
in the Appendix II, used in image reconstruction and in
the reconstruction of covariance from the correspond-
ing variance of the projection data. To demonstrate this
point,the geometrical contours 𝜂(𝜃; x⃗) as functions of the
polar angle 𝜃 are presented in Figure 10.These contours
are overlaid over the corresponding local NPS results
shown in Figure 6 to confirm that the shape of each local
NPS matches these contours.

For better visualization, the contours and their cor-
responding local NPS results for the central column
(D1), central row (D2), and off -diagonal line (D3) are
presented in Figure 11.

5 DISCUSSION

This paper carried out theoretical analyses to eluci-
date the fundamental limitations of the widely-accepted
image-domain NPS measurement method using multi-
ple CT data acquisitions: The method is based on the
assumption of both stationarity and ergodicity condi-
tions, which are seldom satisfied9,53 in experimental CT
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4668 NPS WITHOUT STATIONARITY AND ERGODICITY

F IGURE 9 (a) The quantification of the off -diagonal images is shown in Figure 8, which displays the mean signal value across all the pixels
in the measured NPS image. The error bars represent the standard deviation of the NPS image pixels. As the number of data acquisitions
increases, the error bar decreases, while it remains approximately constant for different ROI sizes. (b) The normalized standard deviation is
plotted against the number of data acquisitions in Figure 8, demonstrating a square root reduction of the error bar mentioned in sub-figure (a).
NPS, noise power spectrum; ROI, regions of interest.

F IGURE 10 Contour profiles 𝜂(𝜃; x⃗) with respect to the polar angle 𝜃, as shown in Equation (B3), are overlaid on the local NPS to
demonstrate that the shape of the local NPS is indeed determined by the contour profile function 𝜂(𝜃; x⃗). NPS, noise power spectrum.

F IGURE 11 Zoomed-in contour profiles for three selected subsets of the local NPS: the central column (D1), central row (D2), and
off -diagonal line (D3). NPS, noise power spectrum.
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data acquisitions. In that method, CT images are first
reconstructed for each of the acquired CT datasets.The
sample mean of the reconstructed images is then cal-
culated and subtracted from the reconstructed image
for each acquisition to produce the noise-only images.
A Fourier transform is applied to the noise-only images
before the modulus square of the Fourier transform is
taken.In the final step,the sample average of these mod-
ulus square Fourier transforms is used to generate the
NPS of the image.

In contrast, this work develops and validates a
projection-domain local NPS measurement method. In
this new method, one begins with the experimental
estimation of the noise variance of projection data.
A closed-form formula is then employed to calculate
the corresponding experimental estimation of the noise
covariance at any two locations, x⃗i and x⃗j . The partial
Fourier transform is subsequently taken with respect to
a chosen anchor point x⃗i and their relative coordinates
Δx⃗ = x⃗j − x⃗i to define local NPS at location x⃗i .

The relationship between the local NPS defined in this
work and the conventional image-domain NPS estima-
tion method has been derived: it is the spatial average of
the local NPS that yields the conventional NPS defined
over the corresponding ROI.

Furthermore, due to the use of the sample mean to
estimate the mathematical expectation of the image
in generating the “noise-only” images in the conven-
tional image-domain NPS measurement method, there
is an additional off -diagonal term left in the conventional
image-domain NPS measurement.9,34 As a result,signif-
icant measurement uncertainties are introduced into the
conventional image-domain NPS measurement method.

This work has the following potential limitations:
First, the statistical independence assumption has
been imposed on the proposed projection-domain local
NPS measurement methods. However, in practice, this
assumption can be violated, even in the context of
PCD-CT imaging. For example, Tanguay et al.54 inves-
tigated the impact of potential correlations on detective
quantum efficiency (DQE) due to charge-sharing effects,
while Xu et al.55 examined these potential correla-
tions when the anti-coincidence function of the detector
is deactivated. Deactivating this function amplifies the
spatial spread of the incident x-ray fluence across neigh-
boring detector elements, enhancing their correlation.
However, in practical applications,detectors are typically
binned to either 0.2 mm × 0.2 mm for the so-called “ultra-
high-resolution mode” (UHR) or 0.4 mm × 0.4 mm for
the “high-resolution” mode in Siemens Naeotom Alpha
PCD-CT scanners. This binning operation alleviates the
charge-sharing induced detector spatial correlations,
even with the anti-coincidence mode deactivated. In our
study, the PCD operates in the anti-coincidence “ON”
mode, and the low energy threshold is set at 23 keV.
Under these conditions, we observed that the statisti-
cal independence assumption aligns well with the data

acquisition conditions presented. That said, extra cau-
tion may be warranted when the proposed method is
used in practice. For example, the anti-charge sharing
mode might be deactivated when detecting high count
rate x-ray fluence to counteract pulse pile-up.

Second, in this study, data acquisitions were con-
ducted at a relatively low frame rate of 10 frames
per second. At this frame rate, no temporal correla-
tions were observed, as demonstrated in Figure 2.
However, this observation is confined to a temporal inter-
val of approximately 100 ms, indicating an absence
of temporal correlation within this specific temporal
scale. For future data acquisitions at frame rates higher
than 10 frames per second, it will be necessary to
investigate the presence and significance of temporal
correlation effects.

Third, to produce high-precision and local NPS
measurements using the proposed projection-domain
method, access to line integral projection data, not just
the reconstructed images, is needed. This could be a
practical limitation since projection data are not typically
available to end-users.

Fourth, in this work, we have exclusively discussed
the local NPS measurement method using the filtered
backprojection reconstruction method. However, one
can readily apply this method to other reconstruction
techniques, provided there exists a closed-form formula
connecting image covariance with the corresponding
noise variance of the projection data. In this context, it
remains an open question to investigate the impact of
the proposed method on other nonlinear image recon-
struction methods, such as model-based iterative image
reconstruction methods and more recent data-driven
machine learning-based image reconstruction methods.

Furthermore, additional investigations are needed
to extend the findings from photon counting CT to
CT systems with energy-integrating detectors. For flat-
panel energy-integrating detectors used in cone-beam
CT imaging, factors such as detector lag56 and after-
glow may also challenge the statistical independence
assumption imposed on the proposed local NPS mea-
surement method. These limitations are beyond the
current paper’s scope and call for additional studies in
the future.

6 CONCLUSION

In conclusion, the conventional image-domain NPS
measurement with multiple data acquisitions and recon-
structed images only provides a spatially-averaged
NPS estimate, and it unavoidably includes a term that
only contributes measurement uncertainties instead of
true NPS values. In contrast, the introduction of the
projection-domain local NPS measurement method in
this work uses the statistical estimator of the variance
of the line integral projection data to measure noise
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covariance and the consequent local NPS to reveal the
rich structure variations in NPS.
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APPENDI X A: DERI VAT I ON OF THE
OFF-D IAGONAL TERM Ômm′

This appendix presents the derivation of the off -
diagonal term Ômm′ (m ≠ m′) in Equation (32):

var[Ômm′ ] = E

[
1
K

K∑
𝓁=1

Δp̂(𝓁)
m Δp̂(𝓁)

m′

]2

,

= 1
K2

K∑
𝓁,𝓁′=1

E
[
Δp̂(𝓁)

m Δp̂(𝓁)
m′ Δp̂(𝓁′)

m Δp̂(𝓁′)
m′

]
,

= 1
K2

K∑
𝓁=𝓁′=1

E
[
Δp̂(𝓁)

m Δp̂(𝓁)
m′ Δp̂(𝓁′)

m Δp̂(𝓁′)
m′

]

+ 1
K2

K∑
𝓁≠𝓁′=1

E
[
Δp̂(𝓁)

m Δp̂(𝓁)
m′ Δp̂(𝓁′)

m Δp̂(𝓁′)
m′

]
,

= 1
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K∑
𝓁=1

E
[(

Δp̂(𝓁)
m

)2(
Δp̂(𝓁)

m′

)2]

+ 1
K2

K∑
𝓁≠𝓁′=1

E
[
Δp̂(𝓁)

m Δp̂(𝓁)
m′

]
E
[
Δp̂(𝓁′)

m Δp̂(𝓁′)
m′

]
.

Using statistical independence for different data acquisi-
tions labeled by the superscript index 𝓁, the expectations
are carried out to obtain the results as follows:

var[Ômm′ ] = 1
K2

× K × E
[
(Δp̂m)2(Δp̂m′ )

2
]

+ 1
K2

× K(K − 1) × E[Δp̂mΔp̂m′ ].

Once again, using statistical independence for the mea-
surements at different detector and view angle labeled
by the subscript index m, the results can be further
simplified as follows:

var[Ômm′ ] = 1
K2

× K × E
[
(Δp̂m)2

]
E
[
(Δp̂m′ )

2
]

+ 1
K2

× K(K − 1) × E[Δp̂m]E[Δp̂m′ ],

= 1
K

var[p̂m]var[p̂m′ ].

where the fact of E [Δp̂m] ≡ 0 and E
[
(Δp̂m)2

]
= var [p̂m]

are used in the final step.

APPENDIX B: CONTOURING PROFILE
𝜼(𝜽; x⃗) OF THE LOCAL NPS
In FBP reconstruction of image Î(x⃗), the acquired pro-
jection data array at each view angle is first filtered
using the ramp filter or its modified version, depending
on the detector geometry. These filtered data at each
view angle form a new array of the filtered data. To
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F IGURE B1 The geometrical illustration of the weighting factor
w(𝜃; x⃗).

reconstruct the image value at location x⃗, that is, Î(x⃗)
as shown in Equation (14), the pixel-driven backpro-
jection approach requires data interpolations to obtain
the corresponding filtered data for the given ray pass-
ing through the targeted image point at location x⃗, as
illustrated in Figure B1.

In our work,a linear interpolation scheme is employed
with the following weighting function w(𝜃; x⃗):

w(x⃗; 𝜃) =
u(x⃗; 𝜃) − uL[u(x⃗; 𝜃)]

Δu
(B1)

where u(𝜃; x⃗) denotes the position where the incident
x-ray passing through x⃗ hits the detector. The function
uL identifies the most adjacent left detector pixel posi-
tion to u(𝜃; x⃗), and Δu represents the detector pixel size.
This weighting function is included in the factor 𝜆m(x⃗) in
Equation (14).As a result of this linear data interpolation
scheme, the following factors appear in the estimated
covariance ĈII

(
x⃗i ; x⃗j

)
in Equation (19):

𝜂′(𝜃; x⃗) = w2(x⃗; 𝜃) + [1 − w(x⃗; 𝜃)]2. (B2)

Moreover, for each point x⃗, due to data redundancy in
fan-beam data acquisition,a conjugate ray at 𝜃 + 𝜋 con-
tributes to the same image point x⃗. As a result, the
final factors that appear in the estimated covariance
ĈII

(
x⃗i ; x⃗j

)
in Equation (19) are given by:

𝜂(𝜃; x⃗) = 1
2

[
𝜂′(𝜃; x⃗) + 𝜂′(𝜃 + 𝜋; x⃗)

]
. (B3)

This results in an angular-dependent profile of the
covariance ĈII

(
x⃗i ; x⃗j

)
centered around the anchor

point x⃗ = x⃗i . After applying the discrete Fourier trans-
form to obtain the corresponding local NPS centered
around x⃗ = x⃗i , this angular-dependent profile automat-
ically results in an angular-dependent profile in the
measured local NPS using the proposed projection-
domain approach.
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