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1 | INTRODUCTION

A quantitative evaluation of the performance of two-
dimensional (2D) x-ray projection or computed tomog-
raphy imaging systems requires the measurement of
the noise power spectrum (NPS)'-3? and modulation
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Abstract

Background: Accurate noise power spectra (NPS) measurement in clinical X-
ray CT exams is challenging due to the need for repeated scans, which expose
patients to high radiation risks. A reliable method for single CT acquisition NPS
estimation is thus highly desirable.

Purpose: To develop a method for estimating local NPS from a single photon
counting detector-CT (PCD-CT) acquisition.

Methods: A novel nearly statistical bias-free estimator was constructed from
the raw counts data of PCD-CT scan to estimate the variance of sinogram
projection data. An analytical algorithm is employed to reconstruct point-wise
covariance cov(x;, X;) between any two image pixel/voxel locations x; and x;. A
Fourier transform is applied to obtain the desired point-wise NPS for any chosen
location x;. The method was validated using experimental data acquired from
a benchtop PCD-CT system with various physical phantoms, and the results
were compared with the conventional local NPS measurement method using
repeated scans and statistical ensemble averaging.

Results: The experimental results demonstrate that (1) the proposed method
can achieve pointwise/local NPS measurement for a region of interest (ROI)
located at any chosen position, accurately characterizing the NPS with spatial
structures resulting from image content heterogeneity; (2) the local NPS mea-
sured using the proposed method show a higher precision in the measured
NPS compared to the conventional measurement method; (3) spatial averaging
of the local NPS yields the conventional NPS for a given local ROI.
Conclusion: A new method was developed to enable local NPS from a single
PCD-CT acquisition.

KEYWORDS
local image quality, noise power spectrum, task-specific

transfer function (MTF).*%-43 Information about the radi-
ation dose efficiency of the system is provided by the
NPS2:39.15.32,35.39 while the ability of the imaging sys-
tem to maintain the signal fidelity at different spatial
frequencies is characterized by the MTF*%~3 The iden-
tification of bottlenecks in an imaging chain that affect
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the imaging performance can be achieved by measur-
ing the NPS and MTF. This knowledge can be utilized to
optimize the imaging system for specific imaging tasks
using appropriate quantitative image quality evaluation
metrics.*4-%4

In the relatively straightforward MTF measurement
process, edge responses in both phantom and clinical
patient studies are evaluated to extract point spread
functions (PSF), and a Fourier transform is subsequently
applied to obtain the desired MTF. This can be achieved
in a single data acquisition, although the result might be
noisy. On the other hand, the standard method for mea-
suring NPS requires that measurements be repeated
under identical acquisition conditions, generating an
ensemble of images232* The statistical sample mean
is then taken over a region of interest (ROI) of the
images to produce the NPS over the selected ROI.
While no problems are posed for physical phantom
studies due to the absence of radiation concerns, data
acquisition time may be extended. In certain cases,
approximations can be introduced to facilitate the NPS
measurement for a uniform phantom or other phan-
toms with predominantly piece-wise image content. For
these simple image objects, the statistical sample mean
over a statistically independent and identical ensem-
ble of samples can be replaced by the spatial average
over small patches of uniform regions in the phantom.
However, the validity of this method depends on the
assumption of independence and identical distribution
(i.i.d) over these small noise patches. Satisfying the i.i.d
assumption in CT images is challenging because the
noise distribution is spatially nonstationary and varies
significantly even for uniform phantom and filtered back-
projection (FBP).'0.11.14.18 Consequently, to account for
the spatial variations of NPS in a local region, it is essen-
tial that NPS be estimated over small ROIs at multiple
sampled locations in the scanning field of view (FOV)
to understand potential performance variations across
the FOV.

Phantom studies are commonly utilized for provid-
ing an overall performance quantification for an imaging
system. However, to achieve a quantitative understand-
ing of the imaging performance of a clinical CT imaging
system for a specific patient,both MTF and NPS must be
measured from patient scans to study performance for
a specific clinical task at a specific anatomical location.
In other words, NPS measurements must be performed
for all local regions in the FOV, and task-specific per-
formance studies'**~5* can be successfully carried
out only if the local NPS is reliably estimated from
patient scans without repeated measurements. How-
ever, a quantitative assessment of NPS in clinical exams
is exceptionally challenging due to the following reasons:
(1) repeated scans for patients cannot be performed
because of patient safety concerns, and (2) the unifor-
mity and homogeneity assumptions used in phantom
studies are severely violated due to the substantial het-

erogeneity of patient anatomy. Consequently, an open
scientific question remains regarding how local NPS
measurements can be experimentally measured without
repeated scans.

The aim of this study was to develop an innovative
method for accurately measuring local NPS from a sin-
gle PCD-CT data acquisition. In this new method, the
measured raw count data are utilized for two purposes:
(1) image reconstruction, in which the data undergo
a logarithmic transform to generate line integral pro-
jection data, and (2) constructing a nearly statistical
bias-free estimator [i.e., bias-free up to the order of

o (#),where N is the photon count] of the variance for

each log-transformed projection datum. Using the con-
structed variance estimator from a single CT acquisition,
the covariance between any two image pixels/voxels
is reconstructed using a closed-form analytical FBP
reconstruction algorithm (i.e., a FBP reconstruction of
the covariance instead of the image). Once the local
covariance over a desired ROl is reconstructed, a
Fourier transform is applied to generate the local NPS.
Experimental phantom data acquired from an benchtop
PCD-CT system were utilized to validate the proposed
local and task-specific NPS measurement method.

2 | THEORETICAL METHOD

Once a CT data acquisition is performed, the measured
raw detector counts are log-transformed to estimate the
projection data p,, for tomographic image reconstruc-
tion:

N
pm=log =22 (m=1,2,..,M), (1)
N

where N, represents the mean raw counts from the
corresponding air scan, and N,,, denotes the raw detec-
tor counts at a given acquisition view angle and a
detector element. Using the above line integral projec-
tion data, the CT image I(X) can be reconstructed using
the FBP algorithm, which can be generically written
as the following discrete sum (detailed derivations are
presented in Appendix):

M
%)= % Am(X)pm. )
m=1

Coefficients 1, are the weighting factors that account for
the effects of the data filtering, interpolation, and back-
projection. This coefficients collect contributions of the
measured data from each detector element and view
angle to the reconstruction of /at each spatial location X.
A, are independent of the acquired photon counts N,,,
which only appear in p,, via Equation (1).
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2.1 | Brief review: Standard NPS
measurement method with repeated
acquisitions

Suppose the same image object is scanned K times
under identical acquisition conditions. Images are first
reconstructed using the conventional FBP algorithm
shown in Equation (2) for each of the repeated acqui-
sitions. The sample mean image, /(X), is generated from
these K reconstructed images

K
i) = 12 0 3)

k=

=N

and then subtracted from each reconstructed image to

k) -
generate the noise-only images, denoted as Af )(x),
where k=1,2--- , K:

) = 16 - o). (4)

From these noise-only images, NPS for a given ROI can
be estimated as follows?324:

AAK

where DFT,p denotes two-dimensional (2D) discrete
Fourier transform (DFT), Ax and Ay denote the physi-
cal dimensions of the reconstructed image pixel, while
N, and N, are the number of pixels along x and y
dimensions of the ROI, respectively. The above formula
summarizes the estimation of the NPS for a local ROI
when the data acquisitions are repeated K times under
identical experimental conditions.

2
NPSK(kX,k DFT2D[AI X)], (5)

2.2 | From covariance to NPS

In PCD-CT, the measured detector counts N,, and the
correspondingly projection data p,, can be approx-
imately considered to be statistically independent
regarding m, since they are measured from detector
elements and different view angles. Using this statis-
tical independence property, it can be shown'0.11.14
that the expected value, E[/(X)] and covariance of the
reconstructed image, COV / (X;; X;), are given below:

M
E[(X)] = D Am(X) E [Bm]; (6)

M
COV; (X, %) = ) Am(X)Am(X) var (Bm),  (7)

MEDICAL PHYSICS——2%

where E [p,,,] is the statistical expectation of the line inte-
gral data, and var(p,,) is the variance of the post-log
projection data. These results are well-known, as found
in literature.'®1".14 It says that one can reconstruct the
covariance of the reconstructed PCD-CT images pro-
vided that the variance of the projection data, var(p,,),
is known.

In this work, local NPS from the above image covari-
ance matrix is defined as follows:a 2D DFT is applied to
COV/(X;, X;) over an ROI centered at X; (pivotal point):

NPS(k,, ky;},-) = AxAy| DFT,p[COV/(X;, 7(/-)] . (8)
Note that the 2D DFT is taken with respect to X; — X;,
namely the relative distance to the chosen pivotal point
X;. Any image pixel in an ROI can be used as the pivotal
point X; to generate the local NPS centered at the pivotal
point. As a result, Equation (8) quantifies the local NPS
at the anchor point X;.

If one is only interested in the overall NPS for the
selected ROI, a spatial average can be performed over
these local NPS included in the ROI as follows:

NPSroi(kx k) = 5 D, NPS(ke k%), (9)

%R0l

where R denotes the number of pivotal points used in
the average.

It is important to emphasize that the image covari-
ance, the projection data variance, and local NPS in
Equations (7) and (8) involve mathematical expectation
operations. Although these operations are meaningful in
theoretical derivations, they do not yet offer a method
for the experimental measurement of local NPS since
one cannot calculate mathematical expectations using
sampled experimental data. To experimentally measure
the local NPS, one must construct a statistical estima-
tor, denoted as var (p,,), from the sampled experimental
data for the true projection data variance, var (p,,). In
the following section, we introduce a novel method to
construct the statistical estimator var (p,,;,) from a sin-
gle PCD-CT acquisition, thereby enabling local NPS
measurement from a single PCD-CT acquisition.

2.3 | Statistical estimator of projection
data variance from a single PCD-CT
acquisition

In addition to the concept of local NPS defined in Equa-
tion (8), another key contribution of this paper is the
development of the following statistical estimator of
the PCD-CT projection variance requiring only a single
PCD-CT acquisition:

Var (p) = - (10)

m
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The above estimator obviates the need for repeated
scanning a given image object. This new estimator has
the following mathematical expectation value:

E[va/r(p\m)]=E[Nlm] = — 4 (11)

Using this new statistical estimator of the projection
variance, the image covariance COV; (X;;X;) in Equa-
tion (7) can be reconstructed with a single PCD-CT data
acquisition. Before we proceed, the following question
must be addressed first: whether the proposed variance
estimator in Equation (10) is a good approximation of
the true variance var (p,,). This question can be read-
ily answered using well-known properties’#555 of the
Poisson-distributed photon counts: it has been shown
that var(p,,) is related to N, by

var(pp,) = var <In M)
Nm

L2 B ol 1) (2
Npm  2N2 12N3 N

where O(N ) denotes higher-order terms.
By comparing Equations (11) and (12), up to the
leading order, we have the following result:
Elvar (p)] ~ var(pp). (13)

This result indicates that the proposed estimator in
Equation (10) is indeed an approximation of var(p,,).
This justifies the validity of the proposed new estimator
in Equation (10) from a single PCD-CT data acquisition.
In practical scenarios where photon counts at a detec-
tor element exceed 10, the first-order approximation
presented in Equation (10) is generally sufficient, as
the bias from neglecting higher-order terms is <1%.
However, at extremely low exposure levels, the pho-
ton count at a detector element can be in single digits,
rendering this leading-order approximation potentially
inadequate. In such cases, it may be beneficial to include
higher-order contributions and address potential zero
counts, as recently demonstrated in CT number bias
correction®-8 by our research group. These advanced
methods can significantly reduce the statistical bias of
the estimator, resulting in an estimator that is almost
free of statistical bias. For convenience, we present an
estimator that is bias-free up to the third order:

(A )third-order 1 1 1 (14)
var (p =— 4+ —+——F.
" Nm = 2N2 ~ 12N3,

Detailed derivations of this estimator is presented in the
Appendix Il to show that it is nearly bias-free up to the

1
order of —
N

m

2.4 | Local NPS measurement from
single PCD-CT acquisition

Using the estimator in Equation (7), PCD-CT image
covariance can be estimated with a single PCD-CT
acquisition:

M
COV;( % D Am(Xi)Am /\7 . (15)

m=1 m

We would like to highlight a crucial difference between
the new method in Equation (15) and the well-known
method in Equation (7): instead of using N, which
cannot be known unless multiple repeated PCD-CT
data acquisitions are performed, the proposed projec-
tion variance estimator uses N,,, enabling the PCD-CT
image covariance and NPS to be estimated from a
single data acquisition process.

In the case of X; =X;, the covariance estimator in
Equation (15) becomes a new variance estimator for any
image pixel/voxel at X;:

& 1,
DR (16)
m=1 Nm
This closed-form formula allows one to reconstruct the
variance map from the raw counts data in parallel
to the reconstruction of the PCD-CT image from the
log-transformed sinogram data.

From COV/(X;, X;) in Equation (15), the following 2D
DFT can be taken over an ROI centered a pivotal point
X; to experimentally measure the 2D NPS:

—_——

NPS(ky, ky; X)) = AxAy| DFTop[COV(%;, X)I|  (17)
Note that any image pixels within a target ROI can be
used as the pivotal point in the above formula. Cor-
respondingly, if one is only interested in the 2D NPS
averaged over the target ROI, a spatial averaging of
NPS(k,, k,; X;) over X; can be performed as follows:

~

PSroi(ky, ky) Z NPS(ky, ky; %), (18)

x,eROI

Figure 1 summarizes the major differences between
the conventional and proposed NPS estimation
methods.

3 | EXPERIMENTAL VALIDATION
METHOD

To experimentally validate the proposed local NPS
measurement method using a single PCD-CT data

85UB017 SUOWIWOD BAITeaID 9 gel(dde au Ag peusenob ae sejoiie YO ‘8sn J0 SN oy AkelqiT auljuQ A8|IAN UO (SUOTIPUCD-pUe-SLelWoo" A8 IM AreIq Ul |Uo//SANy) SUONIPUOD pUe sWe | 8yl 8es *[720z/20/ST] uo Akeiqiauluo A1 ‘0TT.LT dw/2Z00T 0T/I0p/wod Ao im Arelq i jpul|uo-widee//sdny wolj pspeojumoq ‘9 ‘vZ02 ‘60ZVELrZ



TASK-SPECIFIC LOCAL NPS FROM A SINGLE CT ACQUISITION

MEDICAL PHYSICS -2

Conventional Multi-Acquisition Approach

FBP

- |

B.E

Sinograms

CT images
Counts Pm g

ROI,,

Ny X N,

AROI,,

Ny X N,

Proposed Single-Acquisition Approach

Raw
Counts

i
| B
Pm

FBP

NO,m.

N,
| — |

Var (p,,)

between any
two pixels

FIGURE 1

NPS(ky, ky; xxn,)

ROI'NPS

(Top row) The workflow of conventional NPS measurement method with K repeated CT acquisitions. (Bottom row) The

proposed approach to reconstruct local and task-specific NPS from raw detector counts from a single CT acquisition.

acquisition as described in Section 2.4, raw count data
were collected using a benchtop PCD-CT system in the
authors’ laboratory. This system employs a cadmium
telluride (CdTe)-based PCD (model XC-Hydra FX50,
manufactured by Varex Imaging, Sweden). The details
of the acquisition and image reconstruction parameters
are summarized in Table 1.

The experimental studies used three phantoms:
(1) a uniform and cylindrical acrylic phantom with
a diameter of 16 cm; (2) a Catphan600 phan-
tom (The Phantom Laboratory, Salem, NY), and (3)
an anthropomorphic head phantom (Kyoto Kagaku,
Japan).

For all PCD-CT scans, the tube potential was fixed at
120 kV. All three phantoms received PCD-CT scans at
240 mAs. To investigate the mAs dependence of the pro-
posed NPS estimation method, additional scans of the
16-cm uniform phantom were performed at 100 kV and
each of the following mAs levels: 60, 120, 180, 240, 300,
360, 420, and 480.

To compare the proposed single-acquisition NPS
measurement method with the conventional method
involving repeated acquisitions, PCD-CT scans of the

TABLE 1 Data acquisition parameters and reconstruction
parameters.

Source-to-detector distance 1034.0 mm
Source-to-isocenter distance 571.5 mm
Number of projection views 1200

View angle coverage 2

Detector coverage 50 cm x 0.6 cm

Detector pixel size 0.8 mm after binning

Reconstruction algorithm FBP
Reconstruction pixel size 0.35 mm
Reconstruction image matrix size 512 x 512
Reconstruction kernel Ram-Lak

Interpolation scheme Linear interpolation

16-cm uniform phantom were repeated 100 times at
each mAs level. The ROI size is 100 pixels x 100 pixels.
For both the Catphan phantom and the anthropomorphic
phantom with heterogeneous structures, data acquisi-
tions were repeated 20 times, and the ROI size was 64
pixels x 64 pixels.
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Uniform Acrylic
Phantom
(120 kV, 240 mAs)

Proposed
(K=1)

Comparisons for NPS measured at a ROI located at

spatial average
over ROI A

FIGURE 2
the center of the uniform phantom. The proposed NPS method used
data from a single PCD-CT scan, while the conventional method
used data from 100 repeated scans. NPS, noise power spectra;
PCD-CT, photon counting detector-CT; ROI, region of interest.

4 | EXPERIMENTAL RESULTS

In this section, NPS measured using the proposed
single-acquisition method and the corresponding results
from the conventional method were presented to vali-
date the proposed method.

4.1 | NPS of the uniform acrylic phantom
Figure 2 presents two 2D NPS of the uniform acrylic
phantom. One NPS was obtained using the proposed
single-acquisition method, averaged over all 100 x 100
pivotal points within a ROI at the center of the phantom.
The other NPS was measured using the conventional
method at the same ROI, utilizing data from 100
repeated scans. To facilitate a quantitative comparison
of the two 2D NPS in Figure 2, radial profiles of the 2D
NPS were evaluated at three angular orientations. As
shown in Figure 3, the radial profiles of the two NPS

Radial Profile 1

0.5

Radial Profile 3

FIGURE 3

region of interest.

0.5 1
Spatial frequency 1/mm

FIGURE 4 Radial profiles of the 2D NPS measured using the
proposed method at various mAs levels are depicted. The upper
subfigure displays the NPS radial profiles without any normalization,
while the lower subfigure presents the normalized NPS radial
profiles. The ROl is placed at the center of the uniform phantom.
NPS, noise power spectra; ROI, region of interest.

closely align at each of the three angles. However, the

proposed method yielded an NPS with higher precision,

that is, fewer fluctuations.
In Figure 4, radial profiles of the 2D NPS measured
using the proposed method at various mAs levels are

Radial Profile 2

1 0 0.5 1
Radial Averaged (2m)

0
1 0 0.5
Spatial frequency 1/mm

Comparison of NPS radial profiles between the proposed method and the conventional method. The radial profiles averaged
over all angular directions are shown in the lower right. The ROl is located at the center of the uniform phantom. NPS, noise power spectra; ROI,
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Uniform Acrylic
Phantom
(120 kV, 240 mAs)

100x100 ROIs

Proposed

FIGURE 5 2D NPS measured at four different peripheral ROIs in the uniform acrylic phantom. NPS, noise power spectra; ROI, region of

interest.

presented. This figure also presents the normalized NPS
radial profiles, which are obtained by normalizing the
NPS radial profiles with their corresponding area under
the curve. The near-perfect overlap of the normalized
NPS radial profiles suggests that, for a given PCD-CT
system and reconstruction method, the shape of the nor-
malized NPS is largely independent of the mAs level as
one would expect.

Finally, the well-known variation of the NPS structure
at different spatial locations in a uniform phantom are
demonstrated using the proposed NPS measurement
method (Figure 5). The results are compared with the
NPS measured using the conventional method with 100
acquisitions. The accuracy of the NPS generated using
the proposed method, in comparison to the NPS from
the conventional method, was quantified by calculating
their difference. The corresponding quantitative results
are illustrated in Figure 6.

4.2 | NPS of the Catphan phantom

In order to demonstrate the impact of heterogeneity of
the image content on the local NPS structures, 2D NPS
were measured at nine different ROI locations in the
Catphan phantom. Both the proposed (K = 1) and the
conventional method (K = 20) were used.

As shown in Figure 7, due to higher precision of the
NPS from the proposed method, the impact of the high
contrast inserts and empty holes to the local 2D NPS
can be clearly delineated. In contrast, 2D NPS gener-
ated using the conventional method has lower precision,
even though data from 20 repeated scans were used.
The intricate structures within the NPS images from the
conventional method, arising from the phantom’s hetero-
geneity, present a challenge in terms of identification.
To further quantify the measurement accuracy, a plot
depicting the spatial mean difference, that is, the arith-
metic average of the intensity values of the difference
image within the evaluated ROI, and standard devia-
tion is presented in Figure 8a. It is important to note

Uniform Acrylic Phantom

)

- Proposed

(&)

o

]
a

N
=
IS

N

2
T,
@
o
c
o
5}
&=
(@]
=
®
o
=
S
b
©
a
»

N
=)

Center Up Left Down Right
ROI Position

FIGURE 6 Quantitative comparison between the proposed and
conventional NPS measurement methods is presented. For each of
the four peripheral ROls depicted in Figure 5, the conventional NPS
was subtracted from the proposed NPS. The mean values of these
subtraction results are represented by circular markers in the plot,
while their standard deviations are depicted as error bars. NPS, noise
power spectra; ROI, region of interest.

that the fluctuations observed in the NPS difference
image are primarily attributable to fluctuations in the
NPS measured using the conventional method.

4.3 | NPS of the anthropomorphic head
phantom

To further demonstrate the capability of the proposed
method in accurately measuring local NPS in highly
heterogeneous objects with a single acquisition, two
nylon rods were attached to the surface of the anthro-
pomorphic phantom prior to the PCD-CT scan. This
was performed to emulate potential confounding factors
encountered in patient exams, such as dangling wires
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ROI1

Proposed
(K=1)

Catphan600 Phantom
(120 kV, 320 mAs)

64x64 ROIs

ROI 6

Proposed ‘
i .

FIGURE 7

ROI 2 ROI 3 ROI 4 ROI'5

ROI'7

2D NPS were measured at nine ROlIs in the PCD-CT images of a Catphan600 phantom. For the conventional NPS

measurement methods, K = 20. NPS, noise power spectra; PCD-CT, photon counting detector-CT; ROI, region of interest.
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phantom. For each phantom, quantitative analyses were performed at nine regions of interest (ROls). Both the spatial mean and standard

deviation are presented, with units in HUZmm?2.

or IV lines in clinical practice. 2D local NPS results mea-
sured with this object are shown in Figure 9. Results of
quantitative comparison between the proposed and con-
ventional NPS measurement methods are presented in
Figure 8b. The mean differences of nearly zero indi-
cate that the proposed local NPS measurement from
single PCD-CT acquisitions is accurate while, as men-

tioned before, the large measurement error bars in the
differences are largely due to the higher fluctuations

in the measured NPS from the conventional method.

These results clearly demonstrate that the proposed
NPS measurement method opens the door to local NPS
measurements in clinical setting since it only needs one
single PCD-CT acquisition.
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FIGURE 9 2D NPS measured at nine ROI locations in the PCD-CT images of an anthropomorphic head phantom. For the conventional
NPS measurement methods, K = 20. NPS, noise power spectra; PCD-CT, photon counting detector-CT; ROI, region of interest.

5 | DISCUSSION

In this work, a new method to enable NPS measure-
ment from a single PCD-CT acquisition (K = 1) was
developed and validated by comparing the measure-
ment results with the conventional method with repeated
acquisitions (K = 100 for uniform acrylic phantom and
K = 20 for the two heterogeneous phantoms). The work-
flow of the proposed single acquisition-based NPS
measurement method is summarized as follows:

1. Raw counts N, is acquired via a single PCD-CT
acquisition.

2. The log-transformed projection data p,,, is computed.

3. The PCD-CT image is reconstructed using an appro-
priate reconstruction algorithm.

4. For each PCD-CT image pixel/voxel at X;, the vari-
ance 072

5. For each pair of PCD-CT image pixels X; and
X;, the covariance cov, (X;;X;) is computed using
Equation (15).

6. For a ROI centered around a pivotal point x;, the local
2D NPS, that is, NPS(k,, ky; X;) is computed using
Equation (17).

7. If one is interested in the overall NPS for a given RO,

(X;) is computed using Equation (16).

namely NPSgo(ky, ky), it can be computed using
Equation (18).

By following the above workflow, local NPS can be
obtained using data from a single PCD-CT acquisition.

As is widely recognized, the NPS is a vital com-
ponent of task-specific quantitative image quality
assessment** For a specific diagnostic imaging task,
the quantitative image quality can be evaluated using
metrics such as the lesion detectability index (d'2)
within a validated observer model. In these mathemati-
cal observer models, it is essential to rely on the locally
measured NPS and the MTF at the lesion’s location to
provide a clinically relevant estimation of how imaging
performance might vary with imaging parameters such
as radiation exposure level and scanning protocols. In
the context of this quantitative image quality assess-
ment, the NPS estimation method introduced in this
study, which has been validated through phantom stud-
ies, represents a significant advance for patient-specific
and localized NPS measurements in Photon Counting
Detector CT (PCD-CT). It meets two crucial criteria: first,
it enables the measurement of NPS without exposing
the patient to the repeated radiation typical of CT exams;
second, it permits the selection of a ROI for local NPS
calculation that is tailored to the patient’s anatomy, thus
avoiding the need for a large, uniform square ROI. The
implications of utilizing local NPS measurement in this
research will be explored further in future studies.

There are several limitations in this work as well. First,
although it has been experimentally demonstrated that
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the proposed method with a single set of PCD-CT data
provides a more precise estimation of the local NPS
than the conventional method with repeated acquisi-
tions, no theoretical analysis is presented to explain the
underlining reason. This limitation will be addressed in
a separate paper where the missing theoretical anal-
ysis and further generalization of the results will be
presented. Second, the proposed method is only appli-
cable to PCD-CT. For energy integrating detector-CT
(EID-CT) systems, the digital outputs of the detector
do not necessarily follow the Poisson distribution, and
thus the validity of the projection variance estimator
in Equation (10) is uncertain. Additional modifications
are needed to generalize the proposed method to EID-
CTs. Third, the proposed method requires access to
raw detector counts, which may not be available to end
users. Further technical developments are needed to
enable single acquired-based NPS measurement when
the raw count data are unavailable. Fourth, when radia-
tion exposure levels are low, there can be some minor
statistical biases in the projection variance estimator
presented in Equation (10). In those cases, it may be
advantageous to utilize the higher-order estimator pre-
sented in Equation (14) for the projection variance when
calculating local NPS from a single PCD-CT data acqui-
sition. Finally, it remains an open question how to apply
the method presented in this work to other nonlinear
reconstruction methods, such as model-based statistical
image reconstruction methods or the recently intro-
duced data-driven, deep learning-based methods. For
the linear FBP reconstruction method, the noise covari-
ance matrix can be reconstructed from the constructed
noise variance estimator of the projection data due toiits
linearity. However, it is not yet clear how to reconstruct
the noise covariance matrix from the estimated noise
variance of the projection data when using nonlinear
image reconstruction methods.

6 | CONCLUSION

A new method to estimate PCD-CT NPS from a single
data acquisition has been developed and experimen-
tally validated. The proposed method enables PCD-CT
image covariance and NPS to be estimated without per-
forming repeated scans. This method provides a more
efficient approach to quantify PCD-CT image quality,
which is crucial for optimizing or evaluating PCD-CT
systems, scan protocols, and reconstruction algorithms.
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APPENDIX A: CONCISE NOTATION OF
FBP IMAGE RECONSTRUCTION
Given the linearity of the filtered backprojection (FBP)
reconstruction, it follows that the reconstructed image
at a point X is a certain combination of the measured
line integral projection data. For a concrete and precise
understanding of this concept, it is crucial to elucidate
how the coefficients 1,,(X) integrate other reconstruc-
tion details into a simplified form. This appendix presents
detailed derivations to clarify these elements, thereby
facilitating numerical implementations.

The fan beam data acquisition geometry employing
a flat-panel detector and its corresponding geometrical
factors are illustrated in Figure A1. Using this geometry,
the image value f(X) for a given point X within the field
of view is given by the standard filtered backprojection
formula from the sinogram data y(u, t):

T
1) = [ dtw (e, Dl D wy ey, ]

® hramp(u) Iu:z()?,t): (A1)

FIGURE A1
scheme.

The geometry of CT acquisition and backprojection

where hyamp is the ramp kernel, and w,.(u, t) is the weight-
ing factor that compensates for redundant data. The
factors wy(u, t) and wy(u) in Equation (A1) are defined
as

wy(u, ) = SDD - SOD
PEYT TRy

SDD
Wg(u) =

\/SDDZ + 12

where SDD denotes the source-to-detector distance,
and SOD is the source-to-iso distance. Figure A1 depicts
the geometrical interpretation of the factor U(X, t).

To numerically reconstruct the image value at a point X
within the FOV, the FBP reconstruction shown in Equa-
tion (A1) can be rewritten as a discrete summation of
contributions from individual detector elements, labeled
by the index d € D at a view angle indexed by v € V.
Here, V and D represent the total number of view angles
and total detector elements at each view angle, respec-
tively. Av labels the view angle sampling interval,and Au
labels the detector pixel size.

With these notations, the FBP form depicted in Equa-
tion (2) in the main text of the paper can be derived
through the following steps.

» Step 1: Geometric weighting. Accordiong to Equa-
tion (A1), the projection data are first weighted by a
geometric factor wy, that is,

w
Py, = WaPd,v

+ Step 2: Filtering. Then the weighted projection data is
filtered by the digital ramp kernel h, as follows:

Pgr,v = Au 2 hp_g1+a - Py,
d

» Step 3: Determine which detector pixels to backpro-
ject. Let us consider one view angle only at view angle
v.Atthis view angle, the x-ray going through the image
point X will hit the detector at index z,(X) € R:

i} %A
z,(X) =SDD————
SOD -Xx-h,

which is the coordinate in between two detector
elements. The index of the two adjacent elements are

Zv(}) - ULJ

q=wm=[ =

3 Zv(}) — U
dl/?zd\’,(x)+1 = {TJ +1.
where |-| is the floor operation and the U, is the

coordinate for the left-most detector element. It is
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transparent that under this view angle, only the two
detector pixels can contribute to the reconstructed
image 1(X).

+ Step 4: Interpolation. Their contribution is further split-
ted by the interpolation process, the weighting factor
a,(X) can determined by linear interpolation scheme,
that is,

N Z ()?) —up
a,(X) = VT _

For simiplicity and without loss of generality, nearest
neighbor linear interpolation was used to interpolate
data from the left and the right nearest detectors:

pL(x)=11- O‘v(})]pdl,v

d.

= Au[1 = &y ()] Y (Mo +alWalPal s
d
PR = [a(X)IPay v = Auler, (O] Y [Mp gt alWaPa-
d

» Step 5: Redundancy weighting. This step can be mis-
treated. In our work, the weighting scheme is the
parker weighting scheme denoted as 34 , for py . It
is straightforward to perform such weighting

PE(R) = Ingy JPER) + [ JBR(X),

= Aulng, e, 1 — a,(X)] Z[hD—d’V(}Hd]ded,v
d
+ Au[nd{,(})ﬂ,v][av(})] Z[hD—(d{,()?)+1)+d]ded,v~
d

« Step 6: Weighted backprojection. In this step, the
backprojection weighting only concerns the view
angle.

1y(x) = by (X)P7"(%),

3052';?[’ and U,(X) = SOD —%-f,.
The backprojectioFm scheme can be referred to
Figure A1.

* Sum all view angles.

where b,(X) =

Ix) =Y AVI,(X) = ) Avb,(X)PFaer(x)

The final form of the structured FBP equation can be
presented in summation form:

1) =Y Agu(X)Pg,y, (A2)
dyv
where 14,,(X) is given as below:
Aag,v(X) = [AuAv]b, (X)wy [[nd(,(}),v]['] — a,()hp_q, i)+l

+ [0 Gy, o0 NN )41 )+d]] .

MEDICAL PHYSICS -2

To further simplify the notation, we introduce a single
index m = (d, v), which represents both the detec-
tor and view angle indices. This notation allows
us to attain the linear form as depicted in Equa-
tion (2) in the main body of the paper from
Equation (A2).

APPENDIX B: CONSTRUCTION OF
HIGHER-ORDER APPROXIMATIONS OF
THE STATISTICAL ESTIMATOR OF
VARIANCE OF PROJECTION DATA
Consider a Poisson variable N, with mean parameter
N,,,. This appendix outlines the construction of a nearly
bias-free estimator and the determination of coefficients
for higher-order terms in its expansion. The expecta-
tions E (le

obtain the following results:
E<i>=_i+_i+;+0 i ) (B1)
Nm)  Npn N2 2N8, N
()= so[ 1) 2
N2, N2 2N N2
e L)="L 4o 1) (B3)
Ny ) NG Np,

These results can now be employed to construct a
nearly bias-free estimator for projection variance esti-
mation. Up to the third order, we propose an estimator
of the form:

for k = 1, 2, 3 can be readily calculated to

—_ bias-free
var (ppm) =

1 a b
— — 4+ — B4
Nyt e BY
where a and b are real numbers to be determined. Our
goal is to determine the coefficients a and b such that
the expectation of the estimator matches the series

: 1 o .
expansion up to O (N—4> . Specifically, we require

m

1 ,.a b 1.3
E| —+—+— | =Var(pp) = — + —
(Nm N2, N3> " Ny 2

2
m m

+ 2 olLl) @s
12N, N2

Upon solving the above equation, we find the coeffi-
cients to be

b=

1
a—z, 12" (B6)

These values ensure that our estimator is nearly bias-
free up to the third order of N,,. The final constructed
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estimator is

/(A\ )bias-free 1 1 1
var (b =—+—+ ,
" Nm = 2N2 ~ 12N3,

(B7)

which is the same as Equation (14).
To aid readers in understanding the foundational prin-

ciples behind our construction, we intend to clarify the
rationale before finalizing this appendix. At first glance,
the method might seem paradoxical, as it involves
adding extra terms with statistical biases to generate
an estimator with diminished statistical bias. Yet, upon
reflecting on a crucial observation—that the statistical

bias of the random variable 1/N¥ (with N following a
Poisson distribution) escalates to a higher order—the
strategy becomes clear. It is evident that there is an
opportunity to reduce the statistical bias by develop-
ing a superior estimator through linear combinations
of higher-order terms % By carefully choosing the
combination coefficients ay, we can engineer these
higher-order biases, which stem from aggregated terms
in the form 1/NX, to cancel each other out effectively.
This method has been rigorously explored in our pre-
vious studies, especially in efforts to rectify CT number

bias.55-58
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