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ABSTRACT
Purpose: Our preliminary study showed us the capability of a deep learning neural network (DLNN) based method to 
eliminate a specific type of artifact in CT images. This work is to comprehensively study the applicability of a U-net CNN 
architecture in improving the image quality of CT reconstructions by respectively testing its performance in various artifact
removal tasks.
Methods: A U-net architecture is trained by a big dataset of contaminated and expected image pairs. The expected images 
known as reference images are acquired from groundtruths or using superior imaging system. A proper initialization of 
network parameters, a careful normalization of original data and a residual learning objective are incoorprated into the 
framework to boost training convergence. Both numerical and real data studies are conducted to validate this method.
Results: In numerical studies, we found that the DLNN-based artifact reduction is powerful and can work well in 
eliminating nearly all artifacts of various types and recovering detailed structural information in low-quliaty images (e.g. 
plain FBP reconstructions) if the network is trained with groundtruths provided. In real situations where groundtruth is not 
available, the proposed method can characterize the discrepancy between contaminated data and higher-quality reference 
labels genertated by other techniques, mimicking their capability of reducing artifacts. Generalization to disjointed data is 
also examined using testing data. All results show that the DLNN framework can be applied to various artifact reduction 
tasks and outperforms conventional atifact reduction methods with shorter runtime.
Conclusion: This work gained promising results of the U-net network architecture successfully characterizing both global 
and local artifact patterns. By forward propagating contaminated images through the trained network, undesired artifacts 
can be greatly reduced while structural information maintained for an input of CT image. It should be noted that the 
proposed deep network should be trained independently for each specific case. 

I. INTRODUCTION
Diagnostic CT images can be contaminated by various types of artifacts such as metal artifacts, low-dose artifacts, 

and few-view artifacts, etc. Tons of reconstruction and post-processing techniques were proposed to eliminate a certain 
type of artifact1 4. However, few methods have been developed to remove multiple artifact patterns. Recent works on 
artifact reduction techniques based on deep learning neural network (DLNN) demonstrate their power to characterize 

Chen et al. constructed a three convolutional step 
network and a residual encoder-decoder CNN as well to mitigate low-dose noise5,6; Zhang et al. proposed a simliar three-
layer CNN to eliminate limited-angle artifacts7; Gjesteby et al. showed pilot results using six convolutional layers to reduce 
metal streak artifacts8. Zhang et al also proposed a metal artifact reduction method based on CNN9. While achieving 
satisfactory performance, they vary a lot in network design and training implementation and mostly focus on single artifact 
removal task.

In 2015, a U-Net embracing both global and local features is proposed by Ronneberger for image segmentation10. 
Han et al. leveraged this architecture to solve globally distributed few-view problems11. Inspired by this work, we attempt 
to address multiple artifact reduction tasks in image domain such as metal artifact reduction, low-dose artifact reduction, 
and few-view reduction tasks within a single U-Net framework. 
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II. THEORETICAL AND EXPERIMENTAL METHODS
2.1 Deep learning framework

The DLNN based artifact reduction technique can be considered as an implicit recovering operator:

res res= r { } (0.1)

The operator res{} propagates the attenuation map of a contaminated image through the corresponding network 

and acquires the artifact-only image res learned by DLNN. An artifact-free image can be denoted as DL . Using a large 

number of data pairs of artifact contaminated images (denoted by ) and reference images (denoted by * ) which we 

aim to achieve, an optimal operator 
*
res can be trained via minimizing the following objective function of an ensemble 

L2 norm:
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where k indexes a single data pair belonging to the whole dataset . The objective represents the ensemble error 

between DLNN learned images and reference images * .  Trained by the big dataset , the optimal operator 
*
res covers all its systematic and statistical information. Thus the operator *

res can be applied to any data of the same 

format generated by the same scanning system. Note that to avoid numerical problems and stabilize the network during
training, the data pairs are firstly normalized as follows:

min
scaled

-{ }
= (0.3)

min{ } and are minimum value and the standard deviation of all pixel values in the training dataset .

    We utilize the U-net network architecture10,11 illustrated in Fig. 1 as the backbone network with respect to the operator

. Specifically, a U-net consists of multiple stages connected by pooling layers in the first half and unpooling layers in 

the second half. Each stage has two groups and each group comprises of a 3 3 convolution layer (Conv), a batch-

normalization layer (Bnorm), and a ReLu layer. The number of channels for each convolution layer is doubled after each 
pooling layer. A scale by scale concatation strategy is leveraged after each unpooling layer to incorporate the higher 

resolution structural information from previous stages. The last stage employs a 1 1Conv layer to predict the output. 
This multiscale network enlarges the receptive field and potentially achieves better performance in characterizing both 
local and global artifacts.

The training is implemented using Matconvnet12 which is a Matlab programming deep learning toolbox. The proposed 
U-net is trained by stochastic gradient descent (SGD) update with momentum at a constant learning rate and weight decay. 
The parameters of Conv layers are initialized by Xavier method, while uniform initialization using the following criterion 
is performed for Bnorm layers:

filters ~ ( );bias ~ mean( );momentum ~ 0; (0.4)

where denotes the whole inputs in the dataset. The sysmbol ~ represents the same order of magnitude. The training 

of 410 images generally takes a day on GPU Nvida Tesla-80, CPU Intel Xeon E5-2460 @2.40GHz 

2.2 Datasets preparation
In simulation studies, we prepared a set of 2D numerical phantoms by segmenting real abdominal CT volumes. A 

polyenergetic forward projection model13 is leveraged to generate CT projection data of these 2D phantoms. After 
projections acquired, CT images are reconstructed using the conventional FBP reconstruction method. The groundtruths 
are the corresponding monoenergetic attenuation maps of the phantoms at the mean energy of incidented X-ray spectrum. 
The residual reference labels are thus set as the difference between FBP images and groundtruths. Using this data 
preparation work flow, we obtained simulated CT images comtaminated by various artifacts, such as metal artifacts, low-
dose artifacts, and few-view artifacts. Specifically, metal artifacts are simulated by implanting high attenuation objects, 
e.g. Titanium of diverse shapes into random positions of numerical phantoms. Circular scanning geometry is employed 
and configured as 1200mm source-to-detector distance and 600mm source-to-axis distance. A flat 1-D detector is 

configured to have 600 bins of 0.2774mm size. The projections are acquired using 510 incident photon counts with the 

X-ray spectrum of 120kVp with 2mm Al and 0.2mm filtration. Angular coverage is 360 at 1 interval. Thus, a reasonable 

size of dataset for metal artifact reduction ([MAR]) is built. Low-dose([LD]) artifacts are simulated based on [MAR] 

datasets by lowering the kVp and mAs settings to 80kVp and 410 incident photon flux; Few-view([FV]) artifacts are 


